Skip to contents

Classifies OSM features into meaningful functional or analytical categories, according to a supplied classification.

Usage

osm_classify(data, classification)

Arguments

data

imported layer from an OSM PBF file. Usually an 'sf' data frame, but the geometry column is unnecessary. Importantly, the data frame should have an 'other_tags' column with OSM PBF formatting.

classification

a 2-level nested list providing a classification. The layers of the list are:

categoriesa list of tags and matched values that constitute a feature category.
tagsa character vector of tag values to match, or "" to match all possible values. It is also possible to match all except certain tags by negating them with "!" e.g. "!no". Obviously, it is not sensible to mix negation with other specifications.

See osm_point_polygon_class and osm_line_class for example classifications.

Value

a data.table with rows matching the input frame and columns

classified

logical. Whether the feature was classified i.e. matched by any tag-value in the classification.

main_cat

character. The first category the feature was assigned to, depending on the order of categories in the classification.

main_tag

character. The tag matched for the main category.

main_tag_value

character. The value matched on.

alt_cats

character. Alternative (secondary) categories assigned, comma-separated if multiple.

alt_tags_values

character. The tags and double-quoted values matched for secondary categories, comma-separated if multiple.

Note

It is not necessary to expand the 'other_tags' column, e.g. using osm_tags_df(). osm_classify() efficiently searches the content of that column without expanding it.

See also

Examples

# See Examples at ?osmclass for a full examples

# Classify OSM Points in Djibouti
djibouti_points_class <- osm_classify(djibouti_points, osm_point_polygon_class)
head(djibouti_points_class)
#>    classified  main_cat main_tag  main_tag_value alt_cats alt_tags_values
#>        <lgcl>    <char>   <char>          <char>   <char>          <char>
#> 1:      FALSE      <NA>     <NA>            <NA>     <NA>            <NA>
#> 2:       TRUE transport  highway traffic_signals     <NA>            <NA>
#> 3:       TRUE transport  highway traffic_signals     <NA>            <NA>
#> 4:       TRUE transport  highway traffic_signals     <NA>            <NA>
#> 5:       TRUE transport  highway traffic_signals     <NA>            <NA>
#> 6:      FALSE      <NA>     <NA>            <NA>     <NA>            <NA>
collapse::descr(djibouti_points_class)
#> Dataset: djibouti_points_class, 6 Variables, N = 8608
#> --------------------------------------------------------------------------------
#> classified (logical): 
#> Statistics
#>      N  Ndist
#>   8608      2
#> Table
#>        Freq   Perc
#> FALSE  5755  66.86
#> TRUE   2853  33.14
#> --------------------------------------------------------------------------------
#> main_cat (character): 
#> Statistics (66.86% NAs)
#>      N  Ndist
#>   2853     28
#> Table
#>                  Freq   Perc
#> power             997  34.95
#> utilities_other   921  32.28
#> transport         211   7.40
#> shopping          182   6.38
#> food               96   3.36
#> communications     75   2.63
#> facilities         51   1.79
#> accommodation      36   1.26
#> tourism            36   1.26
#> financial          32   1.12
#> institutional      31   1.09
#> health             30   1.05
#> religion           26   0.91
#> public_service     21   0.74
#> ... 14 Others     108   3.79
#> 
#> Summary of Table Frequencies
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>       1       6      20     102      40     997 
#> --------------------------------------------------------------------------------
#> main_tag (character): 
#> Statistics (66.86% NAs)
#>      N  Ndist
#>   2853     22
#> Table
#>               Freq   Perc
#> power          997  34.95
#> man_made       961  33.68
#> amenity        340  11.92
#> shop           185   6.48
#> highway         76   2.66
#> office          72   2.52
#> railway         64   2.24
#> tourism         63   2.21
#> aeroway         39   1.37
#> tower:type      17   0.60
#> leisure         14   0.49
#> historic         9   0.32
#> waterway         3   0.11
#> craft            3   0.11
#> ... 8 Others    10   0.35
#> 
#> Summary of Table Frequencies
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>     1.0     1.2    11.5   129.7    70.0   997.0 
#> --------------------------------------------------------------------------------
#> main_tag_value (character): 
#> Statistics (66.86% NAs)
#>      N  Ndist
#>   2853    179
#> Table
#>                   Freq   Perc
#> water_well         918  32.18
#> tower              787  27.58
#> pole               174   6.10
#> restaurant          62   2.17
#> traffic_signals     54   1.89
#> level_crossing      45   1.58
#> water_point         35   1.23
#> crossing            29   1.02
#> hotel               26   0.91
#> antenna             25   0.88
#> place_of_worship    24   0.84
#> cafe                21   0.74
#> bank                18   0.63
#> waste_disposal      18   0.63
#> ... 165 Others     617  21.63
#> 
#> Summary of Table Frequencies
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>       1       1       2      16       6     918 
#> --------------------------------------------------------------------------------
#> alt_cats (character): 
#> Statistics (97.8% NAs)
#>     N  Ndist
#>   189     15
#> Table
#>                               Freq   Perc
#> office_other                    55  29.10
#> tourism                         35  18.52
#> health                          25  13.23
#> religion                        22  11.64
#> communications                  21  11.11
#> shopping                        11   5.82
#> transport                        9   4.76
#> power                            2   1.06
#> religion, religion               2   1.06
#> utilities_other                  2   1.06
#> military                         1   0.53
#> sports                           1   0.53
#> religion, religion, religion     1   0.53
#> storage                          1   0.53
#> ... 1 Others                     1   0.53
#> 
#> Summary of Table Frequencies
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>       1       1       2      13      22      55 
#> --------------------------------------------------------------------------------
#> alt_tags_values (character): 
#> Statistics (97.8% NAs)
#>     N  Ndist
#>   189     36
#> Table
#>                                   Freq   Perc
#> tourism:"hotel"                     26  13.76
#> tower:type:"communication"          21  11.11
#> religion:"muslim"                   20  10.58
#> office:"government"                 16   8.47
#> healthcare:"pharmacy"               13   6.88
#> office:"telecommunication"          12   6.35
#> shop:"travel_agency"                 9   4.76
#> office:"diplomatic"                  9   4.76
#> public_transport:"station"           7   3.70
#> healthcare:"clinic"                  5   2.65
#> office:"insurance"                   5   2.65
#> healthcare:"hospital"                4   2.12
#> office:"educational_institution"     4   2.12
#> tourism:"apartment"                  4   2.12
#> ... 22 Others                       34  17.99
#> 
#> Summary of Table Frequencies
#>    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#>     1.0     1.0     2.0     5.2     5.5    26.0 
#> --------------------------------------------------------------------------------