
Groningen Growth and Development Centre 10-Sector Database
GGDC10S.RdThe GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are annual series of value added (in local currency), and persons employed for 10 broad sectors.
Usage
data("GGDC10S")Format
A data frame with 5027 observations on the following 16 variables.
Countrychar: Country (43 countries)
Regioncodechar: ISO3 Region code
Regionchar: Region (6 World Regions)
Variablechar: Variable (Value Added or Employment)
Yearnum: Year (67 Years, 1947-2013)
AGRnum: Agriculture
MINnum: Mining
MANnum: Manufacturing
PUnum: Utilities
CONnum: Construction
WRTnum: Trade, restaurants and hotels
TRAnum: Transport, storage and communication
FIREnum: Finance, insurance, real estate and business services
GOVnum: Government services
OTHnum: Community, social and personal services
SUMnum: Summation of sector GDP
References
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
Examples
namlab(GGDC10S, class = TRUE)
#>      Variable     Class                                                 Label
#> 1     Country character                                               Country
#> 2  Regioncode character                                           Region code
#> 3      Region character                                                Region
#> 4    Variable character                                              Variable
#> 5        Year   numeric                                                  Year
#> 6         AGR   numeric                                          Agriculture 
#> 7         MIN   numeric                                                Mining
#> 8         MAN   numeric                                         Manufacturing
#> 9          PU   numeric                                             Utilities
#> 10        CON   numeric                                          Construction
#> 11        WRT   numeric                         Trade, restaurants and hotels
#> 12        TRA   numeric                  Transport, storage and communication
#> 13       FIRE   numeric Finance, insurance, real estate and business services
#> 14        GOV   numeric                                   Government services
#> 15        OTH   numeric               Community, social and personal services
#> 16        SUM   numeric                               Summation of sector GDP
# aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE))
# \donttest{
library(ggplot2)
## World Regions Structural Change Plot
GGDC10S |>
  fmutate(across(AGR:OTH, `*`, 1 / SUM),
          Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
  replace_outliers(0, NA, "min") |>
  collap( ~ Variable + Region + Year, cols = 6:15) |> qDT() |>
  pivot(1:3, names = list(variable = "Sector"), na.rm = TRUE) |>
  ggplot(aes(x = Year, y = value, fill = Sector)) +
    geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
    theme_linedraw(base_size = 14) +
    facet_grid(Variable ~ Region, scales = "free_x") +
    scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
    scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+
    scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
                       labels = scales::percent) +
    theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
          strip.background = element_rect(colour = "grey30", fill = "grey30"))
# A function to plot the structural change of an arbitrary country
plotGGDC <- function(ctry) {
  GGDC10S |>
  fsubset(Country == ctry, Variable, Year, AGR:SUM) |>
  fmutate(across(AGR:OTH, `*`, 1 / SUM), SUM = NULL,
          Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
  replace_outliers(0, NA, "min") |> qDT() |>
  pivot(1:2, names = list(variable = "Sector"), na.rm = TRUE) |>
  ggplot(aes(x = Year, y = value, fill = Sector)) +
    geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
    theme_linedraw(base_size = 14) + facet_wrap( ~ Variable) +
    scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
    scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
    scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
                       labels = scales::percent) +
    theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
          strip.background = element_rect(colour = "grey20", fill = "grey20"),
          strip.text = element_text(face = "bold"))
}
plotGGDC("BWA")
# }