Groningen Growth and Development Centre 10-Sector Database
GGDC10S.Rd
The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are annual series of value added (in local currency), and persons employed for 10 broad sectors.
Usage
data("GGDC10S")
Format
A data frame with 5027 observations on the following 16 variables.
Country
char: Country (43 countries)
Regioncode
char: ISO3 Region code
Region
char: Region (6 World Regions)
Variable
char: Variable (Value Added or Employment)
Year
num: Year (67 Years, 1947-2013)
AGR
num: Agriculture
MIN
num: Mining
MAN
num: Manufacturing
PU
num: Utilities
CON
num: Construction
WRT
num: Trade, restaurants and hotels
TRA
num: Transport, storage and communication
FIRE
num: Finance, insurance, real estate and business services
GOV
num: Government services
OTH
num: Community, social and personal services
SUM
num: Summation of sector GDP
References
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
Examples
namlab(GGDC10S, class = TRUE)
#> Variable Class Label
#> 1 Country character Country
#> 2 Regioncode character Region code
#> 3 Region character Region
#> 4 Variable character Variable
#> 5 Year numeric Year
#> 6 AGR numeric Agriculture
#> 7 MIN numeric Mining
#> 8 MAN numeric Manufacturing
#> 9 PU numeric Utilities
#> 10 CON numeric Construction
#> 11 WRT numeric Trade, restaurants and hotels
#> 12 TRA numeric Transport, storage and communication
#> 13 FIRE numeric Finance, insurance, real estate and business services
#> 14 GOV numeric Government services
#> 15 OTH numeric Community, social and personal services
#> 16 SUM numeric Summation of sector GDP
# aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE))
# \donttest{
library(ggplot2)
## World Regions Structural Change Plot
GGDC10S |>
fmutate(across(AGR:OTH, `*`, 1 / SUM),
Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |>
collap( ~ Variable + Region + Year, cols = 6:15) |> qDT() |>
pivot(1:3, names = list(variable = "Sector"), na.rm = TRUE) |>
ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) +
facet_grid(Variable ~ Region, scales = "free_x") +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey30", fill = "grey30"))
# A function to plot the structural change of an arbitrary country
plotGGDC <- function(ctry) {
GGDC10S |>
fsubset(Country == ctry, Variable, Year, AGR:SUM) |>
fmutate(across(AGR:OTH, `*`, 1 / SUM), SUM = NULL,
Variable = ifelse(Variable == "VA","Value Added Share", "Employment Share")) |>
replace_outliers(0, NA, "min") |> qDT() |>
pivot(1:2, names = list(variable = "Sector"), na.rm = TRUE) |>
ggplot(aes(x = Year, y = value, fill = Sector)) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_wrap( ~ Variable) +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey20", fill = "grey20"),
strip.text = element_text(face = "bold"))
}
plotGGDC("BWA")
# }