Skip to contents

Fast, flexible and precise conversion of common data objects, without method dispatch and extensive checks:

  • qDF, qDT and qTBL convert vectors, matrices, higher-dimensional arrays and suitable lists to data frame, data.table and tibble, respectively.

  • qM converts vectors, higher-dimensional arrays, data frames and suitable lists to matrix.

  • mctl and mrtl column- or row-wise convert a matrix to list, data frame or data.table. They are used internally by qDF/qDT/qTBL, dapply, BY, etc...

  • qF converts atomic vectors to factor (documented on a separate page).

  • as_numeric_factor, as_integer_factor, and as_character_factor convert factors, or all factor columns in a data frame / list, to character or numeric (by converting the levels).

Usage

# Converting between matrices, data frames / tables / tibbles

 qDF(X, row.names.col = FALSE, keep.attr = FALSE, class = "data.frame")
 qDT(X, row.names.col = FALSE, keep.attr = FALSE, class = c("data.table", "data.frame"))
qTBL(X, row.names.col = FALSE, keep.attr = FALSE, class = c("tbl_df","tbl","data.frame"))
  qM(X, row.names.col = NULL , keep.attr = FALSE, class = NULL, sep = ".")

# Programmer functions: matrix rows or columns to list / DF / DT - fully in C++

mctl(X, names = FALSE, return = "list")
mrtl(X, names = FALSE, return = "list")

# Converting factors or factor columns

  as_numeric_factor(X, keep.attr = TRUE)
  as_integer_factor(X, keep.attr = TRUE)
as_character_factor(X, keep.attr = TRUE)

Arguments

X

a vector, factor, matrix, higher-dimensional array, data frame or list. mctl and mrtl only accept matrices, as_numeric_factor, as_integer_factor and as_character_factor only accept factors, data frames or lists.

row.names.col

can be used to add an column saving names or row.names when converting objects to data frame using qDF/qDT/qTBL. TRUE will add a column "row.names", or you can supply a name e.g. row.names.col = "variable". If X is a named atomic vector, a length 2 vector of names can be supplied, e.g., qDF(fmean(mtcars), c("car", "mean")). With qM, the argument has the opposite meaning, and can be used to select one or more columns in a data frame/list which will be used to create the rownames of the matrix e.g. qM(iris, row.names.col = "Species"). In this case the column(s) can be specified using names, indices, a logical vector or a selector function. See Examples.

keep.attr

logical. FALSE (default) yields a hard / thorough object conversion: All unnecessary attributes are removed from the object yielding a plain matrix / data.frame / data.table. FALSE yields a soft / minimal object conversion: Only the attributes 'names', 'row.names', 'dim', 'dimnames' and 'levels' are modified in the conversion. Other attributes are preserved. See also class.

class

if a vector of classes is passed here, the converted object will be assigned these classes. If NULL is passed, the default classes are assigned: qM assigns no class, qDF a class "data.frame", and qDT a class c("data.table", "data.frame"). If keep.attr = TRUE and class = NULL and the object already inherits the default classes, further inherited classes are preserved. See Details and the Example.

sep

character. Separator used for interacting multiple variables selected through row.names.col.

names

logical. Should the list be named using row/column names from the matrix?

return

an integer or string specifying what to return. The options are:

Int. String Description
1"list"returns a plain list
2"data.frame"returns a plain data.frame
3"data.table"returns a plain data.table

Details

Object conversions using these functions are maximally efficient and involve 3 consecutive steps: (1) Converting the storage mode / dimensions / data of the object, (2) converting / modifying the attributes and (3) modifying the class of the object:

(1) is determined by the choice of function and the optional row.names.col argument. Higher-dimensional arrays are converted by expanding the second dimension (adding columns, same as as.matrix, as.data.frame, as.data.table).

(2) is determined by the keep.attr argument: keep.attr = TRUE seeks to preserve the attributes of the object. Its effect is like copying attributes(converted) <- attributes(original), and then modifying the "dim", "dimnames", "names", "row.names" and "levels" attributes as necessitated by the conversion task. keep.attr = FALSE only converts / assigns / removes these attributes and drops all others.

(3) is determined by the class argument: Setting class = "myclass" will yield a converted object of class "myclass", with any other / prior classes being removed by this replacement. Setting class = NULL does NOT mean that a class NULL is assigned (which would remove the class attribute), but rather that the default classes are assigned: qM assigns no class, qDF a class "data.frame", and qDT a class c("data.table", "data.frame"). At this point there is an interaction with keep.attr: If keep.attr = TRUE and class = NULL and the object converted already inherits the respective default classes, then any other inherited classes will also be preserved (with qM(x, keep.attr = TRUE, class = NULL) any class will be preserved if is.matrix(x) evaluates to TRUE.)

The default keep.attr = FALSE ensures hard conversions so that all unnecessary attributes are dropped. Furthermore in qDF/qDT/qTBL the default classes were explicitly assigned. This is to ensure that the default methods apply, even if the user chooses to preserve further attributes. For qM a more lenient default setup was chosen to enable the full preservation of time series matrices with keep.attr = TRUE. If the user wants to keep attributes attached to a matrix but make sure that all default methods work properly, either one of qM(x, keep.attr = TRUE, class = "matrix") or unclass(qM(x, keep.attr = TRUE)) should be employed.

Value

qDF - returns a data.frame
qDT - returns a data.table
qTBL - returns a tibble
qM - returns a matrix
mctl, mrtl - return a list, data frame or data.table
qF - returns a factor
as_numeric_factor - returns X with factors converted to numeric (double) variables
as_integer_factor - returns X with factors converted to integer variables
as_character_factor - returns X with factors converted to character variables

See also

Examples

## Basic Examples
mtcarsM <- qM(mtcars)                   # Matrix from data.frame
mtcarsDT <- qDT(mtcarsM)                # data.table from matrix columns
mtcarsTBL <- qTBL(mtcarsM)              # tibble from matrix columns
head(mrtl(mtcarsM, TRUE, "data.frame")) # data.frame from matrix rows, etc..
#>     Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive Hornet Sportabout Valiant
#> mpg        21            21       22.8           21.4              18.7    18.1
#> cyl         6             6        4.0            6.0               8.0     6.0
#>     Duster 360 Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE Merc 450SL
#> mpg       14.3      24.4     22.8     19.2      17.8       16.4       17.3
#> cyl        8.0       4.0      4.0      6.0       6.0        8.0        8.0
#>     Merc 450SLC Cadillac Fleetwood Lincoln Continental Chrysler Imperial
#> mpg        15.2               10.4                10.4              14.7
#> cyl         8.0                8.0                 8.0               8.0
#>     Fiat 128 Honda Civic Toyota Corolla Toyota Corona Dodge Challenger
#> mpg     32.4        30.4           33.9          21.5             15.5
#> cyl      4.0         4.0            4.0           4.0              8.0
#>     AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9 Porsche 914-2
#> mpg        15.2       13.3             19.2      27.3            26
#> cyl         8.0        8.0              8.0       4.0             4
#>     Lotus Europa Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
#> mpg         30.4           15.8         19.7            15       21.4
#> cyl          4.0            8.0          6.0             8        4.0
#>  [ reached 'max' / getOption("max.print") -- omitted 4 rows ]
head(qDF(mtcarsM, "cars"))              # Adding a row.names column when converting from matrix
#>                cars  mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> 1         Mazda RX4 21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> 2     Mazda RX4 Wag 21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> 3        Datsun 710 22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> 4    Hornet 4 Drive 21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> 5 Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#>  [ reached 'max' / getOption("max.print") -- omitted 1 rows ]
head(qDT(mtcars, "cars"))               # Saving row.names when converting data frame to data.table
#>                 cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am
#>               <char> <num> <num> <num> <num> <num> <num> <num> <num> <num>
#> 1:         Mazda RX4  21.0     6   160   110  3.90 2.620 16.46     0     1
#> 2:     Mazda RX4 Wag  21.0     6   160   110  3.90 2.875 17.02     0     1
#> 3:        Datsun 710  22.8     4   108    93  3.85 2.320 18.61     1     1
#> 4:    Hornet 4 Drive  21.4     6   258   110  3.08 3.215 19.44     1     0
#>     gear  carb
#>    <num> <num>
#> 1:     4     4
#> 2:     4     4
#> 3:     4     1
#> 4:     3     1
#>  [ reached getOption("max.print") -- omitted 2 rows ]
head(qM(iris, "Species"))               # Examples converting data to matrix, saving information
#>        Sepal.Length Sepal.Width Petal.Length Petal.Width
#> setosa          5.1         3.5          1.4         0.2
#> setosa          4.9         3.0          1.4         0.2
#> setosa          4.7         3.2          1.3         0.2
#> setosa          4.6         3.1          1.5         0.2
#> setosa          5.0         3.6          1.4         0.2
#> setosa          5.4         3.9          1.7         0.4
head(qM(GGDC10S, is.character))         # as rownames
#>                               Year      AGR      MIN       MAN        PU
#> BWA.SSA.Sub-saharan Africa.VA 1960       NA       NA        NA        NA
#> BWA.SSA.Sub-saharan Africa.VA 1961       NA       NA        NA        NA
#> BWA.SSA.Sub-saharan Africa.VA 1962       NA       NA        NA        NA
#> BWA.SSA.Sub-saharan Africa.VA 1963       NA       NA        NA        NA
#> BWA.SSA.Sub-saharan Africa.VA 1964 16.30154 3.494075 0.7365696 0.1043936
#>                                     CON      WRT      TRA     FIRE      GOV
#> BWA.SSA.Sub-saharan Africa.VA        NA       NA       NA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA        NA       NA       NA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA        NA       NA       NA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA        NA       NA       NA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA 0.6600454 6.243732 1.658928 1.119194 4.822485
#>                                    OTH      SUM
#> BWA.SSA.Sub-saharan Africa.VA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA       NA       NA
#> BWA.SSA.Sub-saharan Africa.VA 2.341328 37.48229
#>  [ reached getOption("max.print") -- omitted 1 row ]
head(qM(gv(GGDC10S, -(2:3)), 1:3, sep = "-")) # plm-style rownames
#>                  AGR      MIN       MAN        PU       CON      WRT      TRA
#> BWA-VA-1960       NA       NA        NA        NA        NA       NA       NA
#> BWA-VA-1961       NA       NA        NA        NA        NA       NA       NA
#> BWA-VA-1962       NA       NA        NA        NA        NA       NA       NA
#> BWA-VA-1963       NA       NA        NA        NA        NA       NA       NA
#> BWA-VA-1964 16.30154 3.494075 0.7365696 0.1043936 0.6600454 6.243732 1.658928
#> BWA-VA-1965 15.72700 2.495768 1.0181992 0.1350976 1.3462312 7.064825 1.939007
#>                 FIRE      GOV      OTH      SUM
#> BWA-VA-1960       NA       NA       NA       NA
#> BWA-VA-1961       NA       NA       NA       NA
#> BWA-VA-1962       NA       NA       NA       NA
#> BWA-VA-1963       NA       NA       NA       NA
#> BWA-VA-1964 1.119194 4.822485 2.341328 37.48229
#> BWA-VA-1965 1.246789 5.695848 2.678338 39.34710

qDF(fmean(mtcars), c("cars", "mean"))   # Data frame from named vector, with names
#>    cars       mean
#> 1   mpg  20.090625
#> 2   cyl   6.187500
#> 3  disp 230.721875
#> 4    hp 146.687500
#> 5  drat   3.596563
#> 6    wt   3.217250
#> 7  qsec  17.848750
#> 8    vs   0.437500
#> 9    am   0.406250
#> 10 gear   3.687500
#> 11 carb   2.812500

# mrtl() and mctl() are very useful for iteration over matrices
# Think of a coordninates matrix e.g. from sf::st_coordinates()
coord <- matrix(rnorm(10), ncol = 2, dimnames = list(NULL, c("X", "Y")))
# Then we can
for (d in mrtl(coord)) {
  cat("lon =", d[1], ", lat =", d[2], fill = TRUE)
  # do something complicated ...
}
#> lon = -1.34008 , lat = 0.4111546
#> lon = -0.9054664 , lat = 0.5640929
#> lon = -0.2121424 , lat = 0.06356228
#> lon = -0.778162 , lat = 0.5173632
#> lon = -0.1411845 , lat = 0.4395096
rm(coord)

## Factors
cylF <- qF(mtcars$cyl)                  # Factor from atomic vector
cylF
#>  [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4
#> Levels: 4 6 8

# Factor to numeric conversions
identical(mtcars,  as_numeric_factor(dapply(mtcars, qF)))
#> [1] TRUE