Skip to contents

fcumsum is a generic function that computes the (column-wise) cumulative sum of x, (optionally) grouped by g and/or ordered by o. Several options to deal with missing values are provided.

Usage

fcumsum(x, ...)

# Default S3 method
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

# S3 method for class 'matrix'
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

# S3 method for class 'data.frame'
fcumsum(x, g = NULL, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE, ...)

# Methods for indexed data / compatibility with plm:

# S3 method for class 'pseries'
fcumsum(x, na.rm = .op[["na.rm"]], fill = FALSE, shift = "time", ...)

# S3 method for class 'pdata.frame'
fcumsum(x, na.rm = .op[["na.rm"]], fill = FALSE, shift = "time", ...)

# Methods for grouped data frame / compatibility with dplyr:

# S3 method for class 'grouped_df'
fcumsum(x, o = NULL, na.rm = .op[["na.rm"]], fill = FALSE, check.o = TRUE,
        keep.ids = TRUE, ...)

Arguments

x

a numeric vector / time series, (time series) matrix, data frame, 'indexed_series' ('pseries'), 'indexed_frame' ('pdata.frame') or grouped data frame ('grouped_df').

g

a factor, GRP object, or atomic vector / list of vectors (internally grouped with group) used to group x.

o

a vector or list of vectors providing the order in which the elements of x are cumulatively summed. Will be passed to radixorderv unless check.o = FALSE.

na.rm

logical. Skip missing values in x. Defaults to TRUE and implemented at very little computational cost.

fill

if na.rm = TRUE, setting fill = TRUE will overwrite missing values with the previous value of the cumulative sum, starting from 0.

check.o

logical. Programmers option: FALSE prevents passing o to radixorderv, requiring o to be a valid ordering vector that is integer typed with each element in the range [1, length(x)]. This gives some extra speed, but will terminate R if any element of o is too large or too small.

shift

pseries / pdata.frame methods: character. "time" or "row". See flag for details. The argument here does not control 'shifting' of data but rather the order in which elements are summed.

keep.ids

pdata.frame / grouped_df methods: Logical. Drop all identifiers from the output (which includes all grouping variables and variables passed to o). Note: For grouped / panel data frames identifiers are dropped, but the "groups" / "index" attributes are kept.

...

arguments to be passed to or from other methods.

Details

If na.rm = FALSE, fcumsum works like cumsum and propagates missing values. The default na.rm = TRUE skips missing values and computes the cumulative sum on the non-missing values. Missing values are kept. If fill = TRUE, missing values are replaced with the previous value of the cumulative sum (starting from 0), computed on the non-missing values.

By default the cumulative sum is computed in the order in which elements appear in x. If o is provided, the cumulative sum is computed in the order given by radixorderv(o), without the need to first sort x. This applies as well if groups are used (g), in which case the cumulative sum is computed separately in each group.

The pseries and pdata.frame methods assume that the last factor in the index is the time-variable and the rest are grouping variables. The time-variable is passed to radixorderv and used for ordered computation, so that cumulative sums are accurately computed regardless of whether the panel-data is ordered or balanced.

fcumsum explicitly supports integers. Integers in R are bounded at bounded at +-2,147,483,647, and an integer overflow error will be provided if the cumulative sum (within any group) exceeds +-2,147,483,647. In that case data should be converted to double beforehand.

Value

the cumulative sum of values in x, (optionally) grouped by g and/or ordered by o. See Details and Examples.

Examples

## Non-grouped
fcumsum(AirPassengers)
#>        Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec
#> 1949   112   230   362   491   612   747   895  1043  1179  1298  1402  1520
#> 1950  1635  1761  1902  2037  2162  2311  2481  2651  2809  2942  3056  3196
#> 1951  3341  3491  3669  3832  4004  4182  4381  4580  4764  4926  5072  5238
#> 1952  5409  5589  5782  5963  6146  6364  6594  6836  7045  7236  7408  7602
#> 1953  7798  7994  8230  8465  8694  8937  9201  9473  9710  9921 10101 10302
#>  [ reached getOption("max.print") -- omitted 7 rows ]
head(fcumsum(EuStockMarkets))
#>          DAX     SMI     CAC    FTSE
#> [1,] 1628.75  1678.1  1772.8  2443.6
#> [2,] 3242.38  3366.6  3523.3  4903.8
#> [3,] 4848.89  5045.2  5241.3  7352.0
#> [4,] 6469.93  6729.3  6949.4  9822.4
#> [5,] 8088.09  8415.9  8672.5 12307.1
#> [6,] 9698.70 10087.5 10386.8 14773.9
fcumsum(mtcars)
#>                     mpg cyl disp  hp  drat     wt   qsec vs am gear carb
#> Mazda RX4          21.0   6  160 110  3.90  2.620  16.46  0  1    4    4
#> Mazda RX4 Wag      42.0  12  320 220  7.80  5.495  33.48  0  2    8    8
#> Datsun 710         64.8  16  428 313 11.65  7.815  52.09  1  3   12    9
#> Hornet 4 Drive     86.2  22  686 423 14.73 11.030  71.53  2  3   15   10
#> Hornet Sportabout 104.9  30 1046 598 17.88 14.470  88.55  2  3   18   12
#> Valiant           123.0  36 1271 703 20.64 17.930 108.77  3  3   21   13
#>  [ reached 'max' / getOption("max.print") -- omitted 26 rows ]

# Non-grouped but ordered
o <- order(rnorm(nrow(EuStockMarkets)))
all.equal(copyAttrib(fcumsum(EuStockMarkets[o, ], o = o)[order(o), ], EuStockMarkets),
          fcumsum(EuStockMarkets))
#> [1] TRUE

## Grouped
head(with(wlddev, fcumsum(PCGDP, iso3c)))
#> [1] NA NA NA NA NA NA

## Grouped and ordered
head(with(wlddev, fcumsum(PCGDP, iso3c, year)))
#> [1] NA NA NA NA NA NA
head(with(wlddev, fcumsum(PCGDP, iso3c, year, fill = TRUE)))
#> [1] 0 0 0 0 0 0