Summary and print methods for class 'dfm'. print.dfm just prints basic model information and the factor transition matrix \(\textbf{A}\), coef.dfm returns \(\textbf{A}\) and \(\textbf{C}\) in a plain list, whereas
summary.dfm returns all system matrices and additional residual and goodness of fit statistics—with a print method allowing full or compact printout.
Usage
# S3 method for class 'dfm'
print(x, digits = 4L, ...)
# S3 method for class 'dfm'
coef(object, ...)
# S3 method for class 'dfm'
logLik(object, ...)
# S3 method for class 'dfm'
summary(object, method = switch(object$em.method, none = "2s", "qml"), ...)
# S3 method for class 'dfm_summary'
print(x, digits = 4L, compact = sum(x$info["n"] > 15, x$info["n"] > 40), ...)Arguments
- x, object
 an object class 'dfm'.
- digits
 integer. The number of digits to print out.
- ...
 not used.
- method
 character. The factor estimates to use: one of
"qml","2s"or"pca".- compact
 integer. Display a more compact printout:
0prints everything,1omits the observation matrix \(\textbf{C}\) and residual covariance matrixcov(resid(model)), and2omits all disaggregated information on the input data. Sensible default are chosen for different sizes of the input dataset so as to limit large printouts.
Value
Summary information following a dynamic factor model estimation. coef() returns \(\textbf{A}\) and \(\textbf{C}\).
Examples
mod <- DFM(diff(BM14_Q), 2, 3)
#> Converged after 26 iterations.
print(mod)
#> Dynamic Factor Model: n = 9, T = 117, r = 2, p = 3, %NA = 7.5973
#> 
#> Factor Transition Matrix [A]
#>     L1.f1  L1.f2  L2.f1   L2.f2   L3.f1   L3.f2
#> f1 0.6789 0.2413 -0.034 -0.4640 -0.0012 -0.1988
#> f2 0.0353 0.2270 -0.026  0.0645 -0.0744  0.1802
summary(mod)
#> Dynamic Factor Model: n = 9, T = 117, r = 2, p = 3, %NA = 7.5973
#> 
#> Call:  DFM(X = diff(BM14_Q), r = 2, p = 3)
#> 
#> Summary Statistics of Factors [F]
#>       N     Mean  Median      SD      Min     Max
#> f1  117  -0.0084  0.3469  2.2931  -14.408  3.7167
#> f2  117    0.003  0.0867  0.8146  -2.4636  2.1071
#> 
#> Factor Transition Matrix [A]
#>      L1.f1  L1.f2    L2.f1    L2.f2     L3.f1   L3.f2
#> f1 0.67890 0.2413 -0.03401 -0.46403 -0.001235 -0.1988
#> f2 0.03533 0.2270 -0.02598  0.06451 -0.074449  0.1802
#> 
#> Factor Covariance Matrix [cov(F)]
#>          f1       f2
#> f1  5.2584   0.1622 
#> f2  0.1622   0.6636 
#> 
#> Factor Transition Error Covariance Matrix [Q]
#>        u1     u2
#> u1 2.7065 0.2039
#> u2 0.2039 0.6618
#> 
#> Observation Matrix [C]
#>                 f1      f2
#> gdp         0.4094 -0.1237
#> priv_cons   0.2755 -0.4353
#> invest      0.3810 -0.3022
#> export      0.3842  0.4215
#> import      0.3911  0.2106
#> empl        0.3072 -0.3443
#> prductivity 0.2894  0.0222
#> capacity    0.2933  0.0157
#> gdp_us      0.2511  0.1259
#> 
#> Observation Error Covariance Matrix [diag(R) - Restricted]
#>         gdp   priv_cons      invest      export      import        empl 
#>      0.0953      0.4616      0.1685      0.0301      0.1232      0.4160 
#> prductivity    capacity      gdp_us 
#>      0.2317      0.4737      0.6360 
#> 
#> Observation Residual Covariance Matrix [cov(resid(DFM))]
#>                   gdp priv_cons    invest    export    import      empl
#> gdp           0.0670   -0.0046   -0.0096   -0.0038*  -0.0357*  -0.0679*
#> priv_cons    -0.0046    0.4173   -0.0735*   0.0059    0.0060   -0.0777*
#> invest       -0.0096   -0.0735*   0.1263   -0.0010   -0.0210   -0.0620*
#> export       -0.0038*   0.0059   -0.0010    0.0061   -0.0119*   0.0058 
#> import       -0.0357*   0.0060   -0.0210   -0.0119*   0.1090    0.0367 
#> empl         -0.0679*  -0.0777*  -0.0620*   0.0058    0.0367    0.3816 
#> prductivity   0.0683*   0.0273    0.0173   -0.0024   -0.0748*  -0.2119*
#> capacity     -0.0470*  -0.0978*  -0.0320   -0.0201*   0.0624*   0.0628 
#> gdp_us       -0.0209   -0.0023    0.0045   -0.0095   -0.0252   -0.0236 
#>             prductivity  capacity    gdp_us
#> gdp             0.0683*  -0.0470*  -0.0209 
#> priv_cons       0.0273   -0.0978*  -0.0023 
#> invest          0.0173   -0.0320    0.0045 
#> export         -0.0024   -0.0201*  -0.0095 
#> import         -0.0748*   0.0624*  -0.0252 
#> empl           -0.2119*   0.0628   -0.0236 
#> prductivity     0.2215   -0.1119*  -0.0496 
#> capacity       -0.1119*   0.4666   -0.0059 
#> gdp_us         -0.0496   -0.0059    0.6353 
#> 
#> Residual AR(1) Serial Correlation
#>         gdp   priv_cons      invest      export      import        empl 
#>   -0.149924   -0.272110   -0.206251   -0.215038   -0.007949    0.434361 
#> prductivity    capacity      gdp_us 
#>    0.053696    0.091852    0.179658 
#> 
#> Summary of Residual AR(1) Serial Correlations
#>   N     Mean   Median      SD      Min     Max
#>   9  -0.0102  -0.0079  0.2282  -0.2721  0.4344
#> 
#> Goodness of Fit: R-Squared
#>         gdp   priv_cons      invest      export      import        empl 
#>      0.9330      0.5827      0.8737      0.9939      0.8910      0.6184 
#> prductivity    capacity      gdp_us 
#>      0.7785      0.5334      0.3647 
#> 
#> Summary of Individual R-Squared's
#>   N    Mean  Median      SD     Min     Max
#>   9  0.7299  0.7785  0.2139  0.3647  0.9939