Package index
-
dfms-packagedfms - Dynamic Factor Models
-
ICr()print(<ICr>)plot(<ICr>)screeplot(<ICr>) - Information Criteria to Determine the Number of Factors (r)
Fit a Dynamic Factor Model
DFM estimation via the EM algorithm and PCA, and various methods inspect the model and extract results.
-
DFM() - Estimate a Dynamic Factor Model
-
print(<dfm>)coef(<dfm>)logLik(<dfm>)summary(<dfm>)print(<dfm_summary>) - DFM Summary Methods
-
plot(<dfm>)screeplot(<dfm>) - Plot DFM
-
as.data.frame(<dfm>) - Extract Factor Estimates in a Data Frame
-
residuals(<dfm>)fitted(<dfm>) - DFM Residuals and Fitted Values
Forecasting
Forecast both the factors and the data, and methods to visualize forecasts and extract results.
Fast Stationary Kalman Filtering and Smoothing
Optimized Armadillo C++ implementations of the stationary Kalman Filter and Smoother.
Helper Functions
Fast VAR, matrix inverses, imputation/removal of missing values in multivariate time series, and convergence check for EM algorithm.
-
.VAR() - (Fast) Barebones Vector-Autoregression
-
tsnarmimp() - Remove and Impute Missing Values in a Multivariate Time Series
-
ainv()apinv() - Armadillo's Inverse Functions
-
em_converged() - Convergence Test for EM-Algorithm
Data
Euro area macroeconomic data from Banbura and Modugno (2014), and 3 DFM specifications considered in their paper.
-
BM14_ModelsBM14_MBM14_Q - Euro Area Macroeconomic Data from Banbura and Modugno 2014