vignettes/collapse_and_dplyr.Rmd
collapse_and_dplyr.Rmd
This vignette focuses on the integration of collapse and the popular dplyr package by Hadley Wickham. In particular it will demonstrate how using collapse’s fast functions and some fast alternatives for dplyr verbs can substantially facilitate and speed up basic data manipulation, grouped and weighted aggregations and transformations, and panel data computations (i.e. between- and within-transformations, panel-lags, differences and growth rates) in a dplyr (piped) workflow.
Notes:
This vignette is targeted at dplyr / tidyverse users. collapse is a standalone package and can be programmed efficiently without pipes or dplyr verbs.
The ‘Introduction to collapse’ vignette provides a
thorough introduction to the package and a built-in structured
documentation is available under
help("collapse-documentation")
after installing the
package. In addition help("collapse-package")
provides a
compact set of examples for quick-start.
Documentation and vignettes can also be viewed online.
A key feature of collapse is it’s broad set of Fast
Statistical Functions
(fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fnobs, fndistinct
)
which are able to substantially speed-up column-wise, grouped and
weighted computations on vectors, matrices or data frames. The functions
are S3 generic, with a default (vector), matrix and data frame method,
as well as a grouped_df method for grouped tibbles used by
dplyr. The grouped tibble method has the following
arguments:
FUN.grouped_df(x, [w = NULL,] TRA = NULL, [na.rm = TRUE,]
use.g.names = FALSE, keep.group_vars = TRUE, [keep.w = TRUE,] ...)
where w
is a weight variable, and TRA
and
can be used to transform x
using the computed statistics
and one of 10 available transformations
("replace_fill", "replace", "-", "-+", "/", "%", "+", "*", "%%", "-%%"
,
discussed in section 2). na.rm
efficiently removes missing
values and is TRUE
by default. use.g.names
generates new row-names from the unique combinations of groups (default:
disabled), whereas keep.group_vars
(default: enabled) will
keep the grouping columns as is custom in the native
data %>% group_by(...) %>% summarize(...)
workflow in
dplyr. Finally, keep.w
regulates whether a
weighting variable used is also aggregated and saved in a column. For
fsum, fmean, fmedian, fnth, fvar, fsd
and
fmode
this will compute the sum of the weights in each
group, whereas fprod
returns the product of the
weights.
With that in mind, let’s consider some straightforward applications.
Consider the Groningen Growth and Development Center 10-Sector Database included in collapse and introduced in the main vignette:
library(collapse)
head(GGDC10S)
# Country Regioncode Region Variable Year AGR MIN MAN PU
# 1 BWA SSA Sub-saharan Africa VA 1960 NA NA NA NA
# 2 BWA SSA Sub-saharan Africa VA 1961 NA NA NA NA
# 3 BWA SSA Sub-saharan Africa VA 1962 NA NA NA NA
# 4 BWA SSA Sub-saharan Africa VA 1963 NA NA NA NA
# 5 BWA SSA Sub-saharan Africa VA 1964 16.30154 3.494075 0.7365696 0.1043936
# 6 BWA SSA Sub-saharan Africa VA 1965 15.72700 2.495768 1.0181992 0.1350976
# CON WRT TRA FIRE GOV OTH SUM
# 1 NA NA NA NA NA NA NA
# 2 NA NA NA NA NA NA NA
# 3 NA NA NA NA NA NA NA
# 4 NA NA NA NA NA NA NA
# 5 0.6600454 6.243732 1.658928 1.119194 4.822485 2.341328 37.48229
# 6 1.3462312 7.064825 1.939007 1.246789 5.695848 2.678338 39.34710
# Summarize the Data:
# descr(GGDC10S, cols = is_categorical)
# aperm(qsu(GGDC10S, ~Variable, cols = is.numeric))
# Efficiently converting to tibble (no deep copy)
GGDC10S <- qTBL(GGDC10S)
Simple column-wise computations using the fast functions and pipe operators are performed as follows:
library(dplyr)
GGDC10S %>% fnobs # Number of Observations
# Country Regioncode Region Variable Year AGR MIN MAN PU
# 5027 5027 5027 5027 5027 4364 4355 4355 4354
# CON WRT TRA FIRE GOV OTH SUM
# 4355 4355 4355 4355 3482 4248 4364
GGDC10S %>% fndistinct # Number of distinct values
# Country Regioncode Region Variable Year AGR MIN MAN PU
# 43 6 6 2 67 4353 4224 4353 4237
# CON WRT TRA FIRE GOV OTH SUM
# 4339 4344 4334 4349 3470 4238 4364
GGDC10S %>% select_at(6:16) %>% fmedian # Median
# AGR MIN MAN PU CON WRT TRA FIRE GOV
# 4394.5194 173.2234 3718.0981 167.9500 1473.4470 3773.6430 1174.8000 960.1251 3928.5127
# OTH SUM
# 1433.1722 23186.1936
GGDC10S %>% select_at(6:16) %>% fmean # Mean
# AGR MIN MAN PU CON WRT TRA FIRE GOV
# 2526696.5 1867908.9 5538491.4 335679.5 1801597.6 3392909.5 1473269.7 1657114.8 1712300.3
# OTH SUM
# 1684527.3 21566436.8
GGDC10S %>% fmode # Mode
# Country Regioncode Region Variable Year
# "USA" "ASI" "Asia" "EMP" "2010"
# AGR MIN MAN PU CON
# "171.315882316326" "0" "4645.12507642586" "0" "1.34623115930777"
# WRT TRA FIRE GOV OTH
# "21.8380052682527" "8.97743416914571" "40.0701608636442" "0" "3626.84423577048"
# SUM
# "37.4822945751317"
GGDC10S %>% fmode(drop = FALSE) # Keep data structure intact
# # A tibble: 1 × 16
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# * <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 USA ASI Asia EMP 2010 171. 0 4645. 0 1.35 21.8 8.98 40.1 0
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
Moving on to grouped statistics, we can compute the average value added and employment by sector and country using:
GGDC10S %>%
group_by(Variable, Country) %>%
select_at(6:16) %>% fmean
# # A tibble: 85 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1420. 52.1 1932. 1.02e2 7.42e2 1.98e3 6.49e2 628. 2043. 9.92e2 1.05e4
# 2 EMP BOL 964. 56.0 235. 5.35e0 1.23e2 2.82e2 1.15e2 44.6 NA 3.96e2 2.22e3
# 3 EMP BRA 17191. 206. 6991. 3.65e2 3.52e3 8.51e3 2.05e3 4414. 5307. 5.71e3 5.43e4
# 4 EMP BWA 188. 10.5 18.1 3.09e0 2.53e1 3.63e1 8.36e0 15.3 61.1 2.76e1 3.94e2
# 5 EMP CHL 702. 101. 625. 2.94e1 2.96e2 6.95e2 2.58e2 272. NA 1.00e3 3.98e3
# 6 EMP CHN 287744. 7050. 67144. 1.61e3 2.09e4 2.89e4 1.39e4 4929. 22669. 3.10e4 4.86e5
# 7 EMP COL 3091. 145. 1175. 3.39e1 5.24e2 2.07e3 4.70e2 649. NA 1.73e3 9.89e3
# 8 EMP CRI 231. 1.70 136. 1.43e1 5.76e1 1.57e2 4.24e1 54.9 128. 6.51e1 8.87e2
# 9 EMP DEW 2490. 407. 8473. 2.26e2 2.09e3 4.44e3 1.48e3 1689. 3945. 9.99e2 2.62e4
# 10 EMP DNK 236. 8.03 507. 1.38e1 1.71e2 4.55e2 1.61e2 181. 549. 1.11e2 2.39e3
# # … with 75 more rows
Similarly we can aggregate using any other of the above functions.
It is important to not use dplyr’s summarize
together with these functions since that would eliminate their speed
gain. These functions are fast because they are executed only once and
carry out the grouped computations in C++, whereas
summarize
will apply the function to each group in the
grouped tibble.
To better explain this point it is perhaps good to shed some light on what is happening behind the scenes of dplyr and collapse. Fundamentally both packages follow different computing paradigms:
dplyr is an efficient implementation of the Split-Apply-Combine computing paradigm. Data is split into groups, these data-chunks are then passed to a function carrying out the computation, and finally recombined to produce the aggregated data.frame. This modus operandi is evident in the grouping mechanism of dplyr. When a data.frame is passed through group_by, a ‘groups’ attribute is attached:
GGDC10S %>% group_by(Variable, Country) %>% attr("groups")
# # A tibble: 85 × 3
# Variable Country .rows
# <chr> <chr> <list<int>>
# 1 EMP ARG [62]
# 2 EMP BOL [61]
# 3 EMP BRA [62]
# 4 EMP BWA [52]
# 5 EMP CHL [63]
# 6 EMP CHN [62]
# 7 EMP COL [61]
# 8 EMP CRI [62]
# 9 EMP DEW [61]
# 10 EMP DNK [64]
# # … with 75 more rows
This object is a data.frame giving the unique groups and in the third
(last) column vectors containing the indices of the rows belonging to
that group. A command like summarize
uses this information
to split the data.frame into groups which are then passed sequentially
to the function used and later recombined. These steps are also done in
C++ which makes dplyr quite efficient.
Now collapse is based around one-pass grouped computations
at the C++ level using its own grouped statistical functions. In other
words the data is not split and recombined at all but the entire
computation is performed in a single C++ loop running through that data
and completing the computations for each group simultaneously. This
modus operandi is also evident in collapse grouping objects.
The method GRP.grouped_df
takes a dplyr grouping
object from a grouped tibble and efficiently converts it to a
collapse grouping object:
GGDC10S %>% group_by(Variable, Country) %>% GRP %>% str
# Class 'GRP' hidden list of 9
# $ N.groups : int 85
# $ group.id : int [1:5027] 46 46 46 46 46 46 46 46 46 46 ...
# $ group.sizes : int [1:85] 62 61 62 52 63 62 61 62 61 64 ...
# $ groups :List of 2
# ..$ Variable: chr [1:85] "EMP" "EMP" "EMP" "EMP" ...
# .. ..- attr(*, "label")= chr "Variable"
# .. ..- attr(*, "format.stata")= chr "%9s"
# ..$ Country : chr [1:85] "ARG" "BOL" "BRA" "BWA" ...
# .. ..- attr(*, "label")= chr "Country"
# .. ..- attr(*, "format.stata")= chr "%9s"
# $ group.vars : chr [1:2] "Variable" "Country"
# $ ordered : Named logi [1:2] TRUE FALSE
# ..- attr(*, "names")= chr [1:2] "ordered" "sorted"
# $ order : NULL
# $ group.starts: NULL
# $ call : language GRP.grouped_df(X = .)
This object is a list where the first three elements give the number
of groups, the group-id to which each row belongs and a vector of
group-sizes. A function like fsum
uses this information to
(for each column) create a result vector of size ‘N.groups’ and the run
through the column using the ‘group.id’ vector to add the i’th data
point to the ’group.id[i]’th element of the result vector. When the loop
is finished, the grouped computation is also finished.
It is obvious that collapse is faster than dplyr since it’s method of computing involves less steps, and it does not need to call statistical functions multiple times. See the benchmark section.
collapse fast functions do not develop their maximal
performance on a grouped tibble created with group_by
because of the additional conversion cost of the grouping object
incurred by GRP.grouped_df
. This cost is already minimized
through the use of C++, but we can do even better replacing
group_by
with collapse::fgroup_by
.
fgroup_by
works like group_by
but does the
grouping with collapse::GRP
(up to 10x faster than
group_by
) and simply attaches a collapse grouping
object to the grouped_df. Thus the speed gain is 2-fold: Faster grouping
and no conversion cost when calling collapse functions.
Another improvement comes from replacing the dplyr verb
select
with collapse::fselect
, and, for
selection using column names, indices or functions use
collapse::get_vars
instead of select_at
or
select_if
. Next to get_vars
, collapse
also introduces the predicates num_vars
,
cat_vars
, char_vars
, fact_vars
,
logi_vars
and date_vars
to efficiently select
columns by type.
GGDC10S %>% fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fmedian
# # A tibble: 85 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1325. 47.4 1988. 1.05e2 7.82e2 1.85e3 5.80e2 464. 1739. 866. 9.74e3
# 2 EMP BOL 943. 53.5 167. 4.46e0 6.60e1 1.32e2 9.70e1 15.3 NA 384. 1.84e3
# 3 EMP BRA 17481. 225. 7208. 3.76e2 4.05e3 6.45e3 1.58e3 4355. 4450. 4479. 5.19e4
# 4 EMP BWA 175. 12.2 13.1 3.71e0 1.90e1 2.11e1 6.75e0 10.4 53.8 31.2 3.61e2
# 5 EMP CHL 690. 93.9 607. 2.58e1 2.30e2 4.84e2 2.05e2 106. NA 900. 3.31e3
# 6 EMP CHN 293915 8150. 61761. 1.14e3 1.06e4 1.70e4 9.56e3 4328. 19468. 9954. 4.45e5
# 7 EMP COL 3006. 84.0 1033. 3.71e1 4.19e2 1.55e3 3.91e2 655. NA 1430. 8.63e3
# 8 EMP CRI 216. 1.49 114. 7.92e0 5.50e1 8.98e1 2.55e1 19.6 122. 60.6 7.19e2
# 9 EMP DEW 2178 320. 8459. 2.47e2 2.10e3 4.45e3 1.53e3 1656 3700 900 2.65e4
# 10 EMP DNK 187. 3.75 508. 1.36e1 1.65e2 4.61e2 1.61e2 169. 642. 104. 2.42e3
# # … with 75 more rows
microbenchmark(collapse = GGDC10S %>% fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fmedian,
hybrid = GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% fmedian,
dplyr = GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% summarise_all(median, na.rm = TRUE))
# Unit: microseconds
# expr min lq mean median uq max neval
# collapse 337.553 365.228 395.2371 388.3725 429.1675 455.141 100
# hybrid 3850.064 3989.546 4328.3901 4080.1970 4123.8620 7746.294 100
# dplyr 17651.484 17891.109 19327.4406 18269.1285 21151.8590 24944.933 100
Benchmarks on the different components of this code and with larger
data are provided under ‘Benchmarks’. Note that a grouped tibble created
with fgroup_by
can no longer be used for grouped
computations with dplyr verbs like mutate
or
summarize
. fgroup_by
first assigns the class
GDP_df which is for printing grouping information and
subsetting, then the object classes (tbl_df,
data.table or whatever else), followed by classes
grouped_df and data.frame, and adds the grouping
object in a ‘groups’ attribute. Since tbl_df is assigned before
grouped_df, the object is treated by the dplyr
ecosystem like a normal tibble.
class(group_by(GGDC10S, Variable, Country))
# [1] "grouped_df" "tbl_df" "tbl" "data.frame"
class(fgroup_by(GGDC10S, Variable, Country))
# [1] "GRP_df" "tbl_df" "tbl" "grouped_df" "data.frame"
The function fungroup
removes classes ‘GDP_df’ and
‘grouped_df’ and the ‘groups’ attribute (and can thus also be used for
grouped tibbles created with dplyr::group_by
).
Note that any kind of data frame based class can be grouped with
fgroup_by
, and still retain full responsiveness to all
methods defined for that class. Functions performing aggregation on the
grouped data frame remove the grouping object and classes afterwards,
yielding an object with the same class and attributes as the input.
The print method shown below reports the grouping variables, and then
in square brackets the information
[number of groups | average group size (standard-deviation of group sizes)]
:
fgroup_by(GGDC10S, Variable, Country)
# # A tibble: 5,027 × 16
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA SSA Sub-s… VA 1960 NA NA NA NA NA NA NA NA NA
# 2 BWA SSA Sub-s… VA 1961 NA NA NA NA NA NA NA NA NA
# 3 BWA SSA Sub-s… VA 1962 NA NA NA NA NA NA NA NA NA
# 4 BWA SSA Sub-s… VA 1963 NA NA NA NA NA NA NA NA NA
# 5 BWA SSA Sub-s… VA 1964 16.3 3.49 0.737 0.104 0.660 6.24 1.66 1.12 4.82
# 6 BWA SSA Sub-s… VA 1965 15.7 2.50 1.02 0.135 1.35 7.06 1.94 1.25 5.70
# 7 BWA SSA Sub-s… VA 1966 17.7 1.97 0.804 0.203 1.35 8.27 2.15 1.36 6.37
# 8 BWA SSA Sub-s… VA 1967 19.1 2.30 0.938 0.203 0.897 4.31 1.72 1.54 7.04
# 9 BWA SSA Sub-s… VA 1968 21.1 1.84 0.750 0.203 1.22 5.17 2.44 1.03 5.03
# 10 BWA SSA Sub-s… VA 1969 21.9 5.24 2.14 0.578 3.47 5.75 2.72 1.23 5.59
# # … with 5,017 more rows, and 2 more variables: OTH <dbl>, SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
Note further that fselect
and get_vars
are
not full drop-in replacements for select
because they do
not have a grouped_df method:
GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% tail(3)
# # A tibble: 3 × 13
# # Groups: Variable, Country [1]
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP EGY 5206. 29.0 2436. 307. 2733. 2977. 1992. 801. 5539. NA 22020.
# 2 EMP EGY 5186. 27.6 2374. 318. 2795. 3020. 2048. 815. 5636. NA 22219.
# 3 EMP EGY 5161. 24.8 2348. 325. 2931. 3110. 2065. 832. 5736. NA 22533.
GGDC10S %>% group_by(Variable, Country) %>% get_vars(6:16) %>% tail(3)
# # A tibble: 3 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 5206. 29.0 2436. 307. 2733. 2977. 1992. 801. 5539. NA 22020.
# 2 5186. 27.6 2374. 318. 2795. 3020. 2048. 815. 5636. NA 22219.
# 3 5161. 24.8 2348. 325. 2931. 3110. 2065. 832. 5736. NA 22533.
Since by default keep.group_vars = TRUE
in the Fast
Statistical Functions, the end result is nevertheless the same:
GGDC10S %>% group_by(Variable, Country) %>% select_at(6:16) %>% fmean %>% tail(3)
# # A tibble: 3 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA VEN 6860. 35478. 1.96e4 1.06e3 1.17e4 1.93e4 8.03e3 5.60e3 NA 19986. 1.28e5
# 2 VA ZAF 16419. 42928. 8.76e4 1.38e4 1.64e4 6.83e4 4.53e4 6.64e4 7.58e4 30167. 4.63e5
# 3 VA ZMB 1268849. 1006099. 9.00e5 2.19e5 8.66e5 2.10e6 7.05e5 9.10e5 1.10e6 81871. 9.16e6
GGDC10S %>% group_by(Variable, Country) %>% get_vars(6:16) %>% fmean %>% tail(3)
# # A tibble: 3 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA VEN 6860. 35478. 1.96e4 1.06e3 1.17e4 1.93e4 8.03e3 5.60e3 NA 19986. 1.28e5
# 2 VA ZAF 16419. 42928. 8.76e4 1.38e4 1.64e4 6.83e4 4.53e4 6.64e4 7.58e4 30167. 4.63e5
# 3 VA ZMB 1268849. 1006099. 9.00e5 2.19e5 8.66e5 2.10e6 7.05e5 9.10e5 1.10e6 81871. 9.16e6
Another useful verb introduced by collapse is
fgroup_vars
, which can be used to efficiently obtain the
grouping columns or grouping variables from a grouped tibble:
# fgroup_by fully supports grouped tibbles created with group_by or fgroup_by:
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars %>% head(3)
# # A tibble: 3 × 2
# Variable Country
# <chr> <chr>
# 1 VA BWA
# 2 VA BWA
# 3 VA BWA
GGDC10S %>% fgroup_by(Variable, Country) %>% fgroup_vars %>% head(3)
# # A tibble: 3 × 2
# Variable Country
# <chr> <chr>
# 1 VA BWA
# 2 VA BWA
# 3 VA BWA
# The other possibilities:
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("unique") %>% head(3)
# # A tibble: 3 × 2
# Variable Country
# <chr> <chr>
# 1 EMP ARG
# 2 EMP BOL
# 3 EMP BRA
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("names")
# [1] "Variable" "Country"
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("indices")
# [1] 4 1
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("named_indices")
# Variable Country
# 4 1
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("logical")
# [1] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
GGDC10S %>% group_by(Variable, Country) %>% fgroup_vars("named_logical")
# Country Regioncode Region Variable Year AGR MIN MAN PU
# TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
# CON WRT TRA FIRE GOV OTH SUM
# FALSE FALSE FALSE FALSE FALSE FALSE FALSE
Another collapse verb to mention here is
fsubset
, a faster alternative to dplyr::filter
which also provides an option to flexibly subset columns after the
select argument:
# Two equivalent calls, the first is substantially faster
GGDC10S %>% fsubset(Variable == "VA" & Year > 1990, Country, Year, AGR:GOV) %>% head(3)
# # A tibble: 3 × 11
# Country Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA 1991 303. 2647. 473. 161. 580. 807. 233. 433. 1073.
# 2 BWA 1992 333. 2691. 537. 178. 679. 725. 285. 517. 1234.
# 3 BWA 1993 405. 2625. 567. 219. 634. 772. 350. 673. 1487.
GGDC10S %>% filter(Variable == "VA" & Year > 1990) %>% select(Country, Year, AGR:GOV) %>% head(3)
# # A tibble: 3 × 11
# Country Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA 1991 303. 2647. 473. 161. 580. 807. 233. 433. 1073.
# 2 BWA 1992 333. 2691. 537. 178. 679. 725. 285. 517. 1234.
# 3 BWA 1993 405. 2625. 567. 219. 634. 772. 350. 673. 1487.
collapse also offers roworder
,
frename
, colorder
and
ftransform
/TRA
as fast replacements for
dplyr::arrange
, dplyr::rename
,
dplyr::relocate
and dplyr::mutate
.
One can also aggregate with multiple functions at the same time. For
such operations it is often necessary to use curly braces {
to prevent first argument injection so that
%>% cbind(FUN1(.), FUN2(.))
does not evaluate as
%>% cbind(., FUN1(.), FUN2(.))
:
GGDC10S %>%
fgroup_by(Variable, Country) %>%
get_vars(6:16) %>% {
cbind(fmedian(.),
add_stub(fmean(., keep.group_vars = FALSE), "mean_"))
} %>% head(3)
# Variable Country AGR MIN MAN PU CON WRT TRA
# 1 EMP ARG 1324.5255 47.35255 1987.5912 104.738825 782.40283 1854.612 579.93982
# 2 EMP BOL 943.1612 53.53538 167.1502 4.457895 65.97904 132.225 96.96828
# 3 EMP BRA 17480.9810 225.43693 7207.7915 375.851832 4054.66103 6454.523 1580.81120
# FIRE GOV OTH SUM mean_AGR mean_MIN mean_MAN mean_PU mean_CON
# 1 464.39920 1738.836 866.1119 9743.223 1419.8013 52.08903 1931.7602 101.720936 742.4044
# 2 15.34259 NA 384.0678 1842.055 964.2103 56.03295 235.0332 5.346433 122.7827
# 3 4354.86210 4449.942 4478.6927 51881.110 17191.3529 206.02389 6991.3710 364.573404 3524.7384
# mean_WRT mean_TRA mean_FIRE mean_GOV mean_OTH mean_SUM
# 1 1982.1775 648.5119 627.79291 2043.471 992.4475 10542.177
# 2 281.5164 115.4728 44.56442 NA 395.5650 2220.524
# 3 8509.4612 2054.3731 4413.54448 5307.280 5710.2665 54272.985
The function add_stub
used above is a collapse
function adding a prefix (default) or suffix to variables names. The
collapse predicate add_vars
provides a more
efficient alternative to cbind.data.frame
. The idea here is
‘adding’ variables to the data.frame in the first argument i.e. the
attributes of the first argument are preserved, so the expression below
still gives a tibble instead of a data.frame:
GGDC10S %>%
fgroup_by(Variable, Country) %>% {
add_vars(get_vars(., "Reg", regex = TRUE) %>% ffirst, # Regular expression matching column names
num_vars(.) %>% fmean(keep.group_vars = FALSE) %>% add_stub("mean_"), # num_vars selects all numeric variables
fselect(., PU:TRA) %>% fmedian(keep.group_vars = FALSE) %>% add_stub("median_"),
fselect(., PU:CON) %>% fmin(keep.group_vars = FALSE) %>% add_stub("min_"))
} %>% head(3)
# # A tibble: 3 × 22
# Variable Country Regioncode Region mean_Year mean_AGR mean_MIN mean_MAN mean_PU mean_CON mean_WRT
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG LAM Latin … 1980. 1420. 52.1 1932. 102. 742. 1982.
# 2 EMP BOL LAM Latin … 1980 964. 56.0 235. 5.35 123. 282.
# 3 EMP BRA LAM Latin … 1980. 17191. 206. 6991. 365. 3525. 8509.
# # … with 11 more variables: mean_TRA <dbl>, mean_FIRE <dbl>, mean_GOV <dbl>, mean_OTH <dbl>,
# # mean_SUM <dbl>, median_PU <dbl>, median_CON <dbl>, median_WRT <dbl>, median_TRA <dbl>,
# # min_PU <dbl>, min_CON <dbl>
Another nice feature of add_vars
is that it can also
very efficiently reorder columns i.e. bind columns in a different order
than they are passed. This can be done by simply specifying the
positions the added columns should have in the final data frame, and
then add_vars
shifts the first argument columns to the
right to fill in the gaps.
GGDC10S %>%
fsubset(Variable == "VA", Country, AGR, SUM) %>%
fgroup_by(Country) %>% {
add_vars(fgroup_vars(.,"unique"),
fmean(., keep.group_vars = FALSE) %>% add_stub("mean_"),
fsd(., keep.group_vars = FALSE) %>% add_stub("sd_"),
pos = c(2,4,3,5))
} %>% head(3)
# # A tibble: 3 × 5
# Country mean_AGR sd_AGR mean_SUM sd_SUM
# <chr> <dbl> <dbl> <dbl> <dbl>
# 1 ARG 14951. 33061. 152534. 301316.
# 2 BOL 3300. 4456. 22619. 33173.
# 3 BRA 76870. 59442. 1200563. 976963.
A much more compact solution to multi-function and multi-type aggregation is offered by the function collapg:
# This aggregates numeric colums using the mean (fmean) and categorical columns with the mode (fmode)
GGDC10S %>% fgroup_by(Variable, Country) %>% collapg %>% head(3)
# # A tibble: 3 × 16
# Variable Country Regioncode Region Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG LAM Latin … 1980. 1420. 52.1 1932. 102. 742. 1982. 649. 628. 2043.
# 2 EMP BOL LAM Latin … 1980 964. 56.0 235. 5.35 123. 282. 115. 44.6 NA
# 3 EMP BRA LAM Latin … 1980. 17191. 206. 6991. 365. 3525. 8509. 2054. 4414. 5307.
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
By default it aggregates numeric columns using the fmean
and categorical columns using fmode
, and preserves the
order of all columns. Changing these defaults is very easy:
# This aggregates numeric colums using the median and categorical columns using the first value
GGDC10S %>% fgroup_by(Variable, Country) %>% collapg(fmedian, flast) %>% head(3)
# # A tibble: 3 × 16
# Variable Country Regioncode Region Year AGR MIN MAN PU CON WRT TRA FIRE
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG LAM Latin Amer… 1980. 1325. 47.4 1988. 105. 782. 1855. 580. 464.
# 2 EMP BOL LAM Latin Amer… 1980 943. 53.5 167. 4.46 66.0 132. 97.0 15.3
# 3 EMP BRA LAM Latin Amer… 1980. 17481. 225. 7208. 376. 4055. 6455. 1581. 4355.
# # … with 3 more variables: GOV <dbl>, OTH <dbl>, SUM <dbl>
One can apply multiple functions to both numeric and/or categorical data:
GGDC10S %>% fgroup_by(Variable, Country) %>%
collapg(list(fmean, fmedian), list(first, fmode, flast)) %>% head(3)
# # A tibble: 3 × 32
# Variable Country first.Regioncode fmode.Regioncode flast.Regioncode first.Region fmode.Region
# <chr> <chr> <chr> <chr> <chr> <chr> <chr>
# 1 EMP ARG LAM LAM LAM Latin America Latin America
# 2 EMP BOL LAM LAM LAM Latin America Latin America
# 3 EMP BRA LAM LAM LAM Latin America Latin America
# # … with 25 more variables: flast.Region <chr>, fmean.Year <dbl>, fmedian.Year <dbl>,
# # fmean.AGR <dbl>, fmedian.AGR <dbl>, fmean.MIN <dbl>, fmedian.MIN <dbl>, fmean.MAN <dbl>,
# # fmedian.MAN <dbl>, fmean.PU <dbl>, fmedian.PU <dbl>, fmean.CON <dbl>, fmedian.CON <dbl>,
# # fmean.WRT <dbl>, fmedian.WRT <dbl>, fmean.TRA <dbl>, fmedian.TRA <dbl>, fmean.FIRE <dbl>,
# # fmedian.FIRE <dbl>, fmean.GOV <dbl>, fmedian.GOV <dbl>, fmean.OTH <dbl>, fmedian.OTH <dbl>,
# # fmean.SUM <dbl>, fmedian.SUM <dbl>
Applying multiple functions to only numeric (or only categorical) data allows return in a long format:
GGDC10S %>% fgroup_by(Variable, Country) %>%
collapg(list(fmean, fmedian), cols = is.numeric, return = "long") %>% head(3)
# # A tibble: 3 × 15
# Function Variable Country Year AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 fmean EMP ARG 1980. 1420. 52.1 1932. 102. 742. 1982. 649. 628. 2043. 992.
# 2 fmean EMP BOL 1980 964. 56.0 235. 5.35 123. 282. 115. 44.6 NA 396.
# 3 fmean EMP BRA 1980. 17191. 206. 6991. 365. 3525. 8509. 2054. 4414. 5307. 5710.
# # … with 1 more variable: SUM <dbl>
Finally, collapg
also makes it very easy to apply
aggregator functions to certain columns only:
GGDC10S %>% fgroup_by(Variable, Country) %>%
collapg(custom = list(fmean = 6:8, fmedian = 10:12)) %>% head(3)
# # A tibble: 3 × 8
# Variable Country AGR MIN MAN CON WRT TRA
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1420. 52.1 1932. 782. 1855. 580.
# 2 EMP BOL 964. 56.0 235. 66.0 132. 97.0
# 3 EMP BRA 17191. 206. 6991. 4055. 6455. 1581.
To understand more about collapg
, look it up in the
documentation (?collapg
).
Weighted aggregations are possible with the functions
fsum, fprod, fmean, fmedian, fnth, fmode, fvar
and
fsd
. The implementation is such that by default (option
keep.w = TRUE
) these functions also aggregate the weights,
so that further weighted computations can be performed on the aggregated
data. fprod
saves the product of the weights, whereas the
other functions save the sum of the weights in a column next to the
grouping variables. If na.rm = TRUE
(the default), rows
with missing weights are omitted from the computation.
# This computes a frequency-weighted grouped standard-deviation, taking the total EMP / VA as weight
GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(AGR:SUM) %>% fsd(SUM) %>% head(3)
# # A tibble: 3 × 13
# Variable Country sum.SUM AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 653615. 225. 22.2 176. 20.5 285. 856. 195. 493. 1123. 506.
# 2 EMP BOL 135452. 99.7 17.1 168. 4.87 123. 324. 98.1 69.8 NA 258.
# 3 EMP BRA 3364925. 1587. 73.8 2952. 93.8 1861. 6285. 1306. 3003. 3621. 4257.
# This computes a weighted grouped mode, taking the total EMP / VA as weight
GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(AGR:SUM) %>% fmode(SUM) %>% head(3)
# # A tibble: 3 × 13
# Variable Country sum.SUM AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 653615. 1162. 127. 2164. 152. 1415. 3768. 1060. 1748. 4336. 1999.
# 2 EMP BOL 135452. 819. 37.6 604. 10.8 433. 893. 333. 321. NA 1057.
# 3 EMP BRA 3364925. 16451. 313. 11841. 388. 8154. 21860. 5169. 12011. 12149. 14235.
The weighted variance / standard deviation is currently only implemented with frequency weights.
Weighted aggregations may also be performed with
collapg
. By default fsum
is used to compute a
sum of the weights, but it is also possible here to aggregate the
weights with other functions:
# This aggregates numeric colums using the weighted mean (the default) and categorical columns using the weighted mode (the default).
# Weights (column SUM) are aggregated using both the sum and the maximum.
GGDC10S %>% group_by(Variable, Country) %>%
collapg(w = SUM, wFUN = list(fsum, fmax)) %>% head(3)
# # A tibble: 3 × 17
# Variable Country fsum.SUM fmax.SUM Regioncode Region Year AGR MIN MAN PU CON WRT
# <chr> <chr> <dbl> <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 653615. 17929. LAM Latin … 1985. 1361. 56.5 1935. 105. 811. 2217.
# 2 EMP BOL 135452. 4508. LAM Latin … 1987. 977. 57.9 296. 7.07 167. 400.
# 3 EMP BRA 3364925. 102572. LAM Latin … 1989. 17746. 238. 8466. 389. 4436. 11376.
# # … with 4 more variables: TRA <dbl>, FIRE <dbl>, GOV <dbl>, OTH <dbl>
collapse also provides some fast transformations that
significantly extend the scope and speed of manipulations that can be
performed with dplyr::mutate
.
The function ftransform
can be used to manipulate
columns in the same ways as mutate
:
GGDC10S %>% fsubset(Variable == "VA", Country, Year, AGR, SUM) %>%
ftransform(AGR_perc = AGR / SUM * 100, # Computing % of VA in Agriculture
AGR_mean = fmean(AGR), # Average Agricultural VA
AGR = NULL, SUM = NULL) %>% # Deleting columns AGR and SUM
head
# # A tibble: 6 × 4
# Country Year AGR_perc AGR_mean
# <chr> <dbl> <dbl> <dbl>
# 1 BWA 1960 NA 5137561.
# 2 BWA 1961 NA 5137561.
# 3 BWA 1962 NA 5137561.
# 4 BWA 1963 NA 5137561.
# 5 BWA 1964 43.5 5137561.
# 6 BWA 1965 40.0 5137561.
The modification brought by ftransformv
enables
transformations of groups of columns like dplyr::mutate_at
and dplyr::mutate_if
:
# This replaces variables mpg, carb and wt by their log (.c turns expressions into character vectors)
mtcars %>% ftransformv(.c(mpg, carb, wt), log) %>% head
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 3.044522 6 160 110 3.90 0.9631743 16.46 0 1 4 1.3862944
# Mazda RX4 Wag 3.044522 6 160 110 3.90 1.0560527 17.02 0 1 4 1.3862944
# Datsun 710 3.126761 4 108 93 3.85 0.8415672 18.61 1 1 4 0.0000000
# Hornet 4 Drive 3.063391 6 258 110 3.08 1.1678274 19.44 1 0 3 0.0000000
# Hornet Sportabout 2.928524 8 360 175 3.15 1.2354715 17.02 0 0 3 0.6931472
# Valiant 2.895912 6 225 105 2.76 1.2412686 20.22 1 0 3 0.0000000
# Logging numeric variables
iris %>% ftransformv(is.numeric, log) %>% head
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1 1.629241 1.252763 0.3364722 -1.6094379 setosa
# 2 1.589235 1.098612 0.3364722 -1.6094379 setosa
# 3 1.547563 1.163151 0.2623643 -1.6094379 setosa
# 4 1.526056 1.131402 0.4054651 -1.6094379 setosa
# 5 1.609438 1.280934 0.3364722 -1.6094379 setosa
# 6 1.686399 1.360977 0.5306283 -0.9162907 setosa
Instead of column = value
type arguments, it is also
possible to pass a single list of transformed variables to
ftransform
, which will be regarded in the same way as an
evaluated list of column = value
arguments. It can be used
for more complex transformations:
# Logging values and replacing generated Inf values
mtcars %>% ftransform(fselect(., mpg, cyl, vs:gear) %>% lapply(log) %>% replace_Inf) %>% head
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 3.044522 1.791759 160 110 3.90 2.620 16.46 NA 0 1.386294 4
# Mazda RX4 Wag 3.044522 1.791759 160 110 3.90 2.875 17.02 NA 0 1.386294 4
# Datsun 710 3.126761 1.386294 108 93 3.85 2.320 18.61 0 0 1.386294 1
# Hornet 4 Drive 3.063391 1.791759 258 110 3.08 3.215 19.44 0 NA 1.098612 1
# Hornet Sportabout 2.928524 2.079442 360 175 3.15 3.440 17.02 NA NA 1.098612 2
# Valiant 2.895912 1.791759 225 105 2.76 3.460 20.22 0 NA 1.098612 1
If only the computed columns need to be returned,
fcompute
provides an efficient alternative:
GGDC10S %>% fsubset(Variable == "VA", Country, Year, AGR, SUM) %>%
fcompute(AGR_perc = AGR / SUM * 100,
AGR_mean = fmean(AGR)) %>% head
# # A tibble: 6 × 2
# AGR_perc AGR_mean
# <dbl> <dbl>
# 1 NA 5137561.
# 2 NA 5137561.
# 3 NA 5137561.
# 4 NA 5137561.
# 5 43.5 5137561.
# 6 40.0 5137561.
ftransform
and fcompute
are an order of
magnitude faster than mutate
, but they do not support
grouped computations using arbitrary functions. We will see that this is
hardly a limitation as collapse provides very efficient and
elegant alternative programming mechanisms…
All statistical (scalar-valued) functions in the collapse package
(fsum, fprod, fmean, fmedian, fmode, fvar, fsd, fmin, fmax, fnth, ffirst, flast, fnobs, fndistinct
)
have a TRA
argument which can be used to efficiently
transform data by either (column-wise) replacing data values with
computed statistics or sweeping the statistics out of the data.
Operations can be specified using either an integer or quoted operator /
string. The 10 operations supported by TRA
are:
1 - “replace_fill” : replace and overwrite missing values (same
as mutate
)
2 - “replace” : replace but preserve missing values
3 - “-” : subtract (center)
4 - “-+” : subtract group-statistics but add average of group statistics
5 - “/” : divide (scale)
6 - “%” : compute percentages (divide and multiply by 100)
7 - “+” : add
8 - “*” : multiply
9 - “%%” : modulus
10 - “-%%” : subtract modulus
Simple transformations are again straightforward to specify:
# This subtracts the median value from all data points i.e. centers on the median
GGDC10S %>% num_vars %>% fmedian(TRA = "-") %>% head
# # A tibble: 6 × 12
# Year AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 -22 NA NA NA NA NA NA NA NA NA NA NA
# 2 -21 NA NA NA NA NA NA NA NA NA NA NA
# 3 -20 NA NA NA NA NA NA NA NA NA NA NA
# 4 -19 NA NA NA NA NA NA NA NA NA NA NA
# 5 -18 -4378. -170. -3717. -168. -1473. -3767. -1173. -959. -3924. -1431. -23149.
# 6 -17 -4379. -171. -3717. -168. -1472. -3767. -1173. -959. -3923. -1430. -23147.
# This replaces all data points with the mode
GGDC10S %>% char_vars %>% fmode(TRA = "replace") %>% head
# # A tibble: 6 × 4
# Country Regioncode Region Variable
# <chr> <chr> <chr> <chr>
# 1 USA ASI Asia EMP
# 2 USA ASI Asia EMP
# 3 USA ASI Asia EMP
# 4 USA ASI Asia EMP
# 5 USA ASI Asia EMP
# 6 USA ASI Asia EMP
Similarly for grouped transformations:
# Replacing data with the 2nd quartile (25%)
GGDC10S %>%
fselect(Variable, Country, AGR:SUM) %>%
fgroup_by(Variable, Country) %>% fnth(0.25, TRA = "replace_fill") %>% head(3)
# # A tibble: 3 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA BWA 61.3 21.7 23.1 6.31 23.2 26.7 8.98 11.3 27.0 10.1 220.
# 2 VA BWA 61.3 21.7 23.1 6.31 23.2 26.7 8.98 11.3 27.0 10.1 220.
# 3 VA BWA 61.3 21.7 23.1 6.31 23.2 26.7 8.98 11.3 27.0 10.1 220.
# Scaling sectoral data by Variable and Country
GGDC10S %>%
fselect(Variable, Country, AGR:SUM) %>%
fgroup_by(Variable, Country) %>% fsd(TRA = "/") %>% head
# # A tibble: 6 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA BWA NA NA NA NA NA NA NA NA NA
# 2 VA BWA NA NA NA NA NA NA NA NA NA
# 3 VA BWA NA NA NA NA NA NA NA NA NA
# 4 VA BWA NA NA NA NA NA NA NA NA NA
# 5 VA BWA 0.0270 0.000556 0.000523 3.88e-4 5.11e-4 0.00194 0.00154 5.23e-4 0.00134
# 6 VA BWA 0.0260 0.000397 0.000723 5.03e-4 1.04e-3 0.00220 0.00180 5.83e-4 0.00158
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
The benchmarks below will demonstrate that these internal sweeping
and replacement operations fully performed in C++ compute significantly
faster than using dplyr::mutate
, especially as the number
of groups grows large. The S3 generic nature of the Fast Statistical
Functions further allows us to perform grouped mutations on the fly
(together with ftransform
or fcompute
),
without the need of first creating a grouped tibble:
# AGR_gmed = TRUE if AGR is greater than it's median value, grouped by Variable and Country
# Note: This calls fmedian.default
settransform(GGDC10S, AGR_gmed = AGR > fmedian(AGR, list(Variable, Country), TRA = "replace"))
tail(GGDC10S, 3)
# # A tibble: 3 × 17
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY MENA Middle Ea… EMP 2010 5206. 29.0 2436. 307. 2733. 2977. 1992. 801. 5539.
# 2 EGY MENA Middle Ea… EMP 2011 5186. 27.6 2374. 318. 2795. 3020. 2048. 815. 5636.
# 3 EGY MENA Middle Ea… EMP 2012 5161. 24.8 2348. 325. 2931. 3110. 2065. 832. 5736.
# # … with 3 more variables: OTH <dbl>, SUM <dbl>, AGR_gmed <lgl>
# Dividing (scaling) the sectoral data (columns 6 through 16) by their grouped standard deviation
settransformv(GGDC10S, 6:16, fsd, list(Variable, Country), TRA = "/", apply = FALSE)
tail(GGDC10S, 3)
# # A tibble: 3 × 17
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY MENA Middle Ea… EMP 2010 8.41 2.28 4.32 3.56 3.62 3.75 3.75 3.14 3.80
# 2 EGY MENA Middle Ea… EMP 2011 8.38 2.17 4.21 3.68 3.70 3.81 3.86 3.19 3.86
# 3 EGY MENA Middle Ea… EMP 2012 8.34 1.95 4.17 3.76 3.88 3.92 3.89 3.26 3.93
# # … with 3 more variables: OTH <dbl>, SUM <dbl>, AGR_gmed <lgl>
rm(GGDC10S)
Weights are easily added to any grouped transformation:
# This subtracts weighted group means from the data, using SUM column as weights..
GGDC10S %>%
fselect(Variable, Country, AGR:SUM) %>%
fgroup_by(Variable, Country) %>% fmean(SUM, "-") %>% head
# # A tibble: 6 × 13
# Variable Country SUM AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 2 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 3 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 4 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 5 VA BWA 37.5 -1301. -13317. -2965. -529. -2746. -6540. -2157. -4431. -7551. -2613.
# 6 VA BWA 39.3 -1302. -13318. -2964. -529. -2745. -6540. -2156. -4431. -7550. -2613.
Sequential operations are also easily performed:
# This scales and then subtracts the median
GGDC10S %>%
fselect(Variable, Country, AGR:SUM) %>%
fgroup_by(Variable, Country) %>% fsd(TRA = "/") %>% fmedian(TRA = "-")
# # A tibble: 5,027 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 2 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 3 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 4 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 5 VA BWA -0.182 -0.235 -0.183 -0.245 -0.118 -0.0820 -0.0724 -0.0661 -0.108 -0.0848 -0.146
# 6 VA BWA -0.183 -0.235 -0.183 -0.245 -0.117 -0.0817 -0.0722 -0.0660 -0.108 -0.0846 -0.146
# 7 VA BWA -0.180 -0.235 -0.183 -0.245 -0.117 -0.0813 -0.0720 -0.0659 -0.107 -0.0843 -0.145
# 8 VA BWA -0.177 -0.235 -0.183 -0.245 -0.117 -0.0826 -0.0724 -0.0659 -0.107 -0.0841 -0.146
# 9 VA BWA -0.174 -0.235 -0.183 -0.245 -0.117 -0.0823 -0.0717 -0.0661 -0.108 -0.0848 -0.146
# 10 VA BWA -0.173 -0.234 -0.182 -0.243 -0.115 -0.0821 -0.0715 -0.0660 -0.108 -0.0846 -0.145
# # … with 5,017 more rows
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
Of course it is also possible to combine multiple functions as in the aggregation section, or to add variables to existing data:
# This adds a groupwise observation count next to each column
add_vars(GGDC10S, seq(7,27,2)) <- GGDC10S %>%
fgroup_by(Variable, Country) %>% fselect(AGR:SUM) %>%
fnobs("replace_fill") %>% add_stub("N_")
head(GGDC10S)
# # A tibble: 6 × 27
# Country Regioncode Region Variable Year AGR N_AGR MIN N_MIN MAN N_MAN PU N_PU CON
# <chr> <chr> <chr> <chr> <dbl> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> <int> <dbl>
# 1 BWA SSA Sub-sa… VA 1960 NA 47 NA 47 NA 47 NA 47 NA
# 2 BWA SSA Sub-sa… VA 1961 NA 47 NA 47 NA 47 NA 47 NA
# 3 BWA SSA Sub-sa… VA 1962 NA 47 NA 47 NA 47 NA 47 NA
# 4 BWA SSA Sub-sa… VA 1963 NA 47 NA 47 NA 47 NA 47 NA
# 5 BWA SSA Sub-sa… VA 1964 16.3 47 3.49 47 0.737 47 0.104 47 0.660
# 6 BWA SSA Sub-sa… VA 1965 15.7 47 2.50 47 1.02 47 0.135 47 1.35
# # … with 13 more variables: N_CON <int>, WRT <dbl>, N_WRT <int>, TRA <dbl>, N_TRA <int>,
# # FIRE <dbl>, N_FIRE <int>, GOV <dbl>, N_GOV <int>, OTH <dbl>, N_OTH <int>, SUM <dbl>,
# # N_SUM <int>
rm(GGDC10S)
There are lots of other examples one could construct using the 10
operations and 14 functions listed above, the examples provided just
outline the suggested programming basics. Performance considerations
make it very much worthwhile to spend some time and think how complex
operations can be implemented in this programming framework, before
defining some function in R and applying it to data using
dplyr::mutate
.
TRA
Function
Towards this end, calling TRA()
directly also
facilitates more complex and customized operations. Behind the scenes of
the TRA = ...
argument, the Fast Statistical
Functions first compute the grouped statistics on all columns of
the data, and these statistics are then directly fed into a C++ function
that uses them to replace or sweep them out of data points in one of the
10 ways described above. This function can also be called directly by
the name of TRA
.
Fundamentally, TRA
is a generalization of
base::sweep
for column-wise grouped operations1. Direct
calls to TRA
enable more control over inputs and
outputs.
The two operations below are equivalent, although the first is slightly more efficient as it only requires one method dispatch and one check of the inputs:
# This divides by the product
GGDC10S %>%
fgroup_by(Variable, Country) %>%
get_vars(6:16) %>% fprod(TRA = "/") %>% head
# # A tibble: 6 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 NA NA NA NA NA NA NA NA NA
# 2 NA NA NA NA NA NA NA NA NA
# 3 NA NA NA NA NA NA NA NA NA
# 4 NA NA NA NA NA NA NA NA NA
# 5 1.29e-105 2.81e-127 1.40e-101 4.44e-74 4.19e-102 3.97e-113 6.91e-92 1.01e-97 2.51e-117
# 6 1.24e-105 2.00e-127 1.94e-101 5.75e-74 8.55e-102 4.49e-113 8.08e-92 1.13e-97 2.96e-117
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
# Same thing
GGDC10S %>%
fgroup_by(Variable, Country) %>%
get_vars(6:16) %>%
TRA(fprod(., keep.group_vars = FALSE), "/") %>% head # [same as TRA(.,fprod(., keep.group_vars = FALSE),"/")]
# # A tibble: 6 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 NA NA NA NA NA NA NA NA NA
# 2 NA NA NA NA NA NA NA NA NA
# 3 NA NA NA NA NA NA NA NA NA
# 4 NA NA NA NA NA NA NA NA NA
# 5 1.29e-105 2.81e-127 1.40e-101 4.44e-74 4.19e-102 3.97e-113 6.91e-92 1.01e-97 2.51e-117
# 6 1.24e-105 2.00e-127 1.94e-101 5.75e-74 8.55e-102 4.49e-113 8.08e-92 1.13e-97 2.96e-117
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
TRA.grouped_df
was designed such that it matches the
columns of the statistics (aggregated columns) to those of the original
data, and only transforms matching columns while returning the whole
data frame. Thus it is easily possible to only apply a transformation to
the first two sectors:
# This only demeans Agriculture (AGR) and Mining (MIN)
GGDC10S %>%
fgroup_by(Variable, Country) %>%
TRA(fselect(., AGR, MIN) %>% fmean(keep.group_vars = FALSE), "-") %>% head
# # A tibble: 6 × 16
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA SSA Sub-s… VA 1960 NA NA NA NA NA NA NA NA NA
# 2 BWA SSA Sub-s… VA 1961 NA NA NA NA NA NA NA NA NA
# 3 BWA SSA Sub-s… VA 1962 NA NA NA NA NA NA NA NA NA
# 4 BWA SSA Sub-s… VA 1963 NA NA NA NA NA NA NA NA NA
# 5 BWA SSA Sub-s… VA 1964 -446. -4505. 0.737 0.104 0.660 6.24 1.66 1.12 4.82
# 6 BWA SSA Sub-s… VA 1965 -446. -4506. 1.02 0.135 1.35 7.06 1.94 1.25 5.70
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
Since TRA
is already built into all Fast Statistical
Functions as an argument, it is best used in computations where
grouped statistics are computed using some other function.
# Same as above, with one line of code using fmean.data.frame and ftransform...
GGDC10S %>% ftransform(fmean(list(AGR = AGR, MIN = MIN), list(Variable, Country), TRA = "-")) %>% head
# # A tibble: 6 × 16
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA SSA Sub-s… VA 1960 NA NA NA NA NA NA NA NA NA
# 2 BWA SSA Sub-s… VA 1961 NA NA NA NA NA NA NA NA NA
# 3 BWA SSA Sub-s… VA 1962 NA NA NA NA NA NA NA NA NA
# 4 BWA SSA Sub-s… VA 1963 NA NA NA NA NA NA NA NA NA
# 5 BWA SSA Sub-s… VA 1964 -446. -4505. 0.737 0.104 0.660 6.24 1.66 1.12 4.82
# 6 BWA SSA Sub-s… VA 1965 -446. -4506. 1.02 0.135 1.35 7.06 1.94 1.25 5.70
# # … with 2 more variables: OTH <dbl>, SUM <dbl>
Another potential use of TRA
is to do computations in
two- or more steps, for example if both aggregated and transformed data
are needed, or if computations are more complex and involve other
manipulations in-between the aggregating and sweeping part:
# Get grouped tibble
gGGDC <- GGDC10S %>% fgroup_by(Variable, Country)
# Get aggregated data
gsumGGDC <- gGGDC %>% fselect(AGR:SUM) %>% fsum
head(gsumGGDC)
# # A tibble: 6 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 88028. 3230. 1.20e5 6307. 4.60e4 1.23e5 4.02e4 3.89e4 1.27e5 6.15e4 6.54e5
# 2 EMP BOL 58817. 3418. 1.43e4 326. 7.49e3 1.72e4 7.04e3 2.72e3 NA 2.41e4 1.35e5
# 3 EMP BRA 1065864. 12773. 4.33e5 22604. 2.19e5 5.28e5 1.27e5 2.74e5 3.29e5 3.54e5 3.36e6
# 4 EMP BWA 8839. 493. 8.49e2 145. 1.19e3 1.71e3 3.93e2 7.21e2 2.87e3 1.30e3 1.85e4
# 5 EMP CHL 44220. 6389. 3.94e4 1850. 1.86e4 4.38e4 1.63e4 1.72e4 NA 6.32e4 2.51e5
# 6 EMP CHN 17264654. 422972. 4.03e6 96364. 1.25e6 1.73e6 8.36e5 2.96e5 1.36e6 1.86e6 2.91e7
# Get transformed (scaled) data
head(TRA(gGGDC, gsumGGDC, "/"))
# # A tibble: 6 × 16
# Country Regioncode Region Variable Year AGR MIN MAN PU CON WRT
# <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA SSA Sub-sahar… VA 1960 NA NA NA NA NA NA
# 2 BWA SSA Sub-sahar… VA 1961 NA NA NA NA NA NA
# 3 BWA SSA Sub-sahar… VA 1962 NA NA NA NA NA NA
# 4 BWA SSA Sub-sahar… VA 1963 NA NA NA NA NA NA
# 5 BWA SSA Sub-sahar… VA 1964 7.50e-4 1.65e-5 1.66e-5 1.03e-5 1.57e-5 6.82e-5
# 6 BWA SSA Sub-sahar… VA 1965 7.24e-4 1.18e-5 2.30e-5 1.33e-5 3.20e-5 7.72e-5
# # … with 5 more variables: TRA <dbl>, FIRE <dbl>, GOV <dbl>, OTH <dbl>, SUM <dbl>
As discussed, whether using the argument to fast statistical
functions or TRA
directly, these data transformations are
essentially a two-step process: Statistics are first computed and then
used to transform the original data.
Although both steps are efficiently done in C++, it would be even more efficient to do them in a single step without materializing all the statistics before transforming the data. Such slightly more efficient functions are provided for the very commonly applied tasks of centering and averaging data by groups (widely known as ‘between’-group and ‘within’-group transformations), and scaling and centering data by groups (also known as ‘standardizing’ data).
The functions fbetween
and fwithin
are
slightly more memory efficient implementations of fmean
invoked with different TRA
options:
GGDC10S %>% # Same as ... %>% fmean(TRA = "replace")
fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fbetween %>% tail(2)
# # A tibble: 2 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 4444. 34.9 1614. 131. 997. 1307. 799. 320. 2958. NA 12605.
# 2 4444. 34.9 1614. 131. 997. 1307. 799. 320. 2958. NA 12605.
GGDC10S %>% # Same as ... %>% fmean(TRA = "replace_fill")
fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fbetween(fill = TRUE) %>% tail(2)
# # A tibble: 2 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 4444. 34.9 1614. 131. 997. 1307. 799. 320. 2958. NA 12605.
# 2 4444. 34.9 1614. 131. 997. 1307. 799. 320. 2958. NA 12605.
GGDC10S %>% # Same as ... %>% fmean(TRA = "-")
fgroup_by(Variable, Country) %>% get_vars(6:16) %>% fwithin %>% tail(2)
# # A tibble: 2 × 11
# AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 742. -7.35 760. 187. 1798. 1713. 1249. 495. 2678. NA 9614.
# 2 717. -10.1 734. 194. 1934. 1803. 1266. 512. 2778. NA 9928.
Apart from higher speed, fwithin
has a mean
argument to assign an arbitrary mean to centered data, the default being
mean = 0
. A very common choice for such an added mean is
just the overall mean of the data, which can be added in by invoking
mean = "overall.mean"
:
GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(Country, Variable, AGR:SUM) %>% fwithin(mean = "overall.mean") %>% tail(3)
# # A tibble: 3 × 13
# Country Variable AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY EMP 2527458. 1867903. 5539313. 3.36e5 1.80e6 3.39e6 1.47e6 1.66e6 1.71e6 NA 2.16e7
# 2 EGY EMP 2527439. 1867902. 5539251. 3.36e5 1.80e6 3.39e6 1.47e6 1.66e6 1.71e6 NA 2.16e7
# 3 EGY EMP 2527413. 1867899. 5539226. 3.36e5 1.80e6 3.39e6 1.47e6 1.66e6 1.72e6 NA 2.16e7
This can also be done using weights. The code below uses the
SUM
column as weights, and then for each variable and each
group subtracts out the weighted mean, and then adds the overall
weighted column mean back to the centered columns. The SUM
column is just kept as it is and added after the grouping columns.
GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(Country, Variable, AGR:SUM) %>% fwithin(SUM, mean = "overall.mean") %>% tail(3)
# # A tibble: 3 × 13
# Country Variable SUM AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EGY EMP 22020. 429066006. 3.70e8 7.38e8 2.73e7 2.83e8 4.33e8 1.97e8 1.55e8 2.10e8 NA
# 2 EGY EMP 22219. 429065986. 3.70e8 7.38e8 2.73e7 2.83e8 4.33e8 1.97e8 1.55e8 2.10e8 NA
# 3 EGY EMP 22533. 429065961. 3.70e8 7.38e8 2.73e7 2.83e8 4.33e8 1.97e8 1.55e8 2.10e8 NA
Another argument to fwithin
is the theta
parameter, allowing partial- or quasi-demeaning operations,
e.g. fwithin(gdata, theta = theta)
is equal to
gdata - theta * fbetween(gdata)
. This is particularly
useful to prepare data for variance components (also known as
‘random-effects’) estimation.
Apart from fbetween
and fwithin
, the
function fscale
exists to efficiently scale and center
data, to avoid sequential calls such as
... %>% fsd(TRA = "/") %>% fmean(TRA = "-")
.
# This efficiently scales and centers (i.e. standardizes) the data
GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(Country, Variable, AGR:SUM) %>% fscale
# # A tibble: 5,027 × 13
# Country Variable AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA NA NA NA NA NA NA NA NA NA NA NA
# 2 BWA VA NA NA NA NA NA NA NA NA NA NA NA
# 3 BWA VA NA NA NA NA NA NA NA NA NA NA NA
# 4 BWA VA NA NA NA NA NA NA NA NA NA NA NA
# 5 BWA VA -0.738 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.596 -0.676
# 6 BWA VA -0.739 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.596 -0.676
# 7 BWA VA -0.736 -0.717 -0.668 -0.805 -0.692 -0.603 -0.589 -0.635 -0.656 -0.595 -0.676
# 8 BWA VA -0.734 -0.717 -0.668 -0.805 -0.692 -0.604 -0.589 -0.635 -0.655 -0.595 -0.676
# 9 BWA VA -0.730 -0.717 -0.668 -0.805 -0.692 -0.604 -0.588 -0.635 -0.656 -0.596 -0.676
# 10 BWA VA -0.729 -0.716 -0.667 -0.803 -0.690 -0.603 -0.588 -0.635 -0.656 -0.596 -0.675
# # … with 5,017 more rows
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
fscale
also has additional mean
and
sd
arguments allowing the user to (group-) scale data to an
arbitrary mean and standard deviation. Setting mean = FALSE
just scales the data but preserves the means, and is thus different from
fsd(..., TRA = "/")
which simply divides all values by the
standard deviation:
# Saving grouped tibble
gGGDC <- GGDC10S %>%
fgroup_by(Variable, Country) %>%
fselect(Country, Variable, AGR:SUM)
# Original means
head(fmean(gGGDC))
# # A tibble: 6 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1420. 52.1 1932. 102. 742. 1.98e3 6.49e2 628. 2043. 9.92e2 1.05e4
# 2 EMP BOL 964. 56.0 235. 5.35 123. 2.82e2 1.15e2 44.6 NA 3.96e2 2.22e3
# 3 EMP BRA 17191. 206. 6991. 365. 3525. 8.51e3 2.05e3 4414. 5307. 5.71e3 5.43e4
# 4 EMP BWA 188. 10.5 18.1 3.09 25.3 3.63e1 8.36e0 15.3 61.1 2.76e1 3.94e2
# 5 EMP CHL 702. 101. 625. 29.4 296. 6.95e2 2.58e2 272. NA 1.00e3 3.98e3
# 6 EMP CHN 287744. 7050. 67144. 1606. 20852. 2.89e4 1.39e4 4929. 22669. 3.10e4 4.86e5
# Mean Preserving Scaling
head(fmean(fscale(gGGDC, mean = FALSE)))
# # A tibble: 6 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1420. 52.1 1932. 102. 742. 1.98e3 6.49e2 628. 2043. 9.92e2 1.05e4
# 2 EMP BOL 964. 56.0 235. 5.35 123. 2.82e2 1.15e2 44.6 NA 3.96e2 2.22e3
# 3 EMP BRA 17191. 206. 6991. 365. 3525. 8.51e3 2.05e3 4414. 5307. 5.71e3 5.43e4
# 4 EMP BWA 188. 10.5 18.1 3.09 25.3 3.63e1 8.36e0 15.3 61.1 2.76e1 3.94e2
# 5 EMP CHL 702. 101. 625. 29.4 296. 6.95e2 2.58e2 272. NA 1.00e3 3.98e3
# 6 EMP CHN 287744. 7050. 67144. 1606. 20852. 2.89e4 1.39e4 4929. 22669. 3.10e4 4.86e5
head(fsd(fscale(gGGDC, mean = FALSE)))
# # A tibble: 6 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 EMP ARG 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
# 2 EMP BOL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 NA 1.00 1.00
# 3 EMP BRA 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
# 4 EMP BWA 1.00 1.00 1.00 1 1 1.00 1.00 1.00 1.00 1.00 1.00
# 5 EMP CHL 1.00 1 1.00 1.00 1.00 1.00 1.00 1.00 NA 1.00 1.00
# 6 EMP CHN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
One can also set mean = "overall.mean"
, which
group-centers columns on the overall mean as illustrated with
fwithin
. Another interesting option is setting
sd = "within.sd"
. This group-scales data such that every
group has a standard deviation equal to the within-standard deviation of
the data:
# Just using VA data for this example
gGGDC <- GGDC10S %>%
fsubset(Variable == "VA", Country, AGR:SUM) %>%
fgroup_by(Country)
# This calculates the within- standard deviation for all columns
fsd(num_vars(ungroup(fwithin(gGGDC))))
# AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# 45046972 40122220 75608708 3062688 30811572 44125207 20676901 16030868 20358973 18780869
# SUM
# 306429102
# This scales all groups to take on the within- standard deviation while preserving group means
fsd(fscale(gGGDC, mean = FALSE, sd = "within.sd"))
# # A tibble: 43 × 12
# Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 ARG 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 2 BOL 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 NA 1.88e7 3.06e8
# 3 BRA 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 4 BWA 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 5 CHL 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 NA 1.88e7 3.06e8
# 6 CHN 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 7 COL 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 NA 1.88e7 3.06e8
# 8 CRI 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 9 DEW 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# 10 DNK 45046972. 40122220. 75608708. 3062688. 3.08e7 4.41e7 2.07e7 1.60e7 2.04e7 1.88e7 3.06e8
# # … with 33 more rows
A grouped scaling operation with both
mean = "overall.mean"
and sd = "within.sd"
thus efficiently achieves a harmonization of all groups in the first two
moments without changing the fundamental properties (in terms of level
and scale) of the data.
This section introduces 3 further powerful collapse
functions: flag
, fdiff
and
fgrowth
. The first function, flag
, efficiently
computes sequences of fully identified lags and leads on time series and
panel data. The following code computes 1 fully-identified panel-lag and
1 fully identified panel-lead of each variable in the data:
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% flag(-1:1, Year)
# # A tibble: 5,027 × 36
# Country Variable Year F1.AGR AGR L1.AGR F1.MIN MIN L1.MIN F1.MAN MAN L1.MAN F1.PU PU
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA NA NA NA NA NA
# 4 BWA VA 1963 16.3 NA NA 3.49 NA NA 0.737 NA NA 0.104 NA
# 5 BWA VA 1964 15.7 16.3 NA 2.50 3.49 NA 1.02 0.737 NA 0.135 0.104
# 6 BWA VA 1965 17.7 15.7 16.3 1.97 2.50 3.49 0.804 1.02 0.737 0.203 0.135
# 7 BWA VA 1966 19.1 17.7 15.7 2.30 1.97 2.50 0.938 0.804 1.02 0.203 0.203
# 8 BWA VA 1967 21.1 19.1 17.7 1.84 2.30 1.97 0.750 0.938 0.804 0.203 0.203
# 9 BWA VA 1968 21.9 21.1 19.1 5.24 1.84 2.30 2.14 0.750 0.938 0.578 0.203
# 10 BWA VA 1969 23.1 21.9 21.1 10.2 5.24 1.84 4.15 2.14 0.750 1.12 0.578
# # … with 5,017 more rows, and 22 more variables: L1.PU <dbl>, F1.CON <dbl>, CON <dbl>,
# # L1.CON <dbl>, F1.WRT <dbl>, WRT <dbl>, L1.WRT <dbl>, F1.TRA <dbl>, TRA <dbl>, L1.TRA <dbl>,
# # F1.FIRE <dbl>, FIRE <dbl>, L1.FIRE <dbl>, F1.GOV <dbl>, GOV <dbl>, L1.GOV <dbl>, F1.OTH <dbl>,
# # OTH <dbl>, L1.OTH <dbl>, F1.SUM <dbl>, SUM <dbl>, L1.SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
If the time-variable passed does not exactly identify the data
(i.e. because of repeated values in each group), all 3 functions will
issue appropriate error messages. flag
, fdiff
and fgrowth
support irregular time series and unbalanced
panels.
It is also possible to omit the time-variable if one is certain that the data is sorted:
GGDC10S %>%
fselect(Variable, Country,AGR:SUM) %>%
fgroup_by(Variable, Country) %>% flag
# # A tibble: 5,027 × 13
# Variable Country AGR MIN MAN PU CON WRT TRA FIRE GOV OTH SUM
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 2 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 3 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 4 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 5 VA BWA NA NA NA NA NA NA NA NA NA NA NA
# 6 VA BWA 16.3 3.49 0.737 0.104 0.660 6.24 1.66 1.12 4.82 2.34 37.5
# 7 VA BWA 15.7 2.50 1.02 0.135 1.35 7.06 1.94 1.25 5.70 2.68 39.3
# 8 VA BWA 17.7 1.97 0.804 0.203 1.35 8.27 2.15 1.36 6.37 2.99 43.1
# 9 VA BWA 19.1 2.30 0.938 0.203 0.897 4.31 1.72 1.54 7.04 3.31 41.4
# 10 VA BWA 21.1 1.84 0.750 0.203 1.22 5.17 2.44 1.03 5.03 2.36 41.1
# # … with 5,017 more rows
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
fdiff
computes sequences of lagged-leaded and iterated
differences as well as quasi-differences and log-differences on time
series and panel data. The code below computes the 1 and 10 year first
and second differences of each variable in the data:
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fdiff(c(1, 10), 1:2, Year)
# # A tibble: 5,027 × 47
# Country Variable Year D1.AGR D2.AGR L10D1.AGR L10D2.AGR D1.MIN D2.MIN L10D1.MIN L10D2.MIN D1.MAN
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA NA NA NA
# 6 BWA VA 1965 -0.575 NA NA NA -0.998 NA NA NA 0.282
# 7 BWA VA 1966 1.95 2.53 NA NA -0.525 0.473 NA NA -0.214
# 8 BWA VA 1967 1.47 -0.488 NA NA 0.328 0.854 NA NA 0.134
# 9 BWA VA 1968 1.95 0.488 NA NA -0.460 -0.788 NA NA -0.188
# 10 BWA VA 1969 0.763 -1.19 NA NA 3.41 3.87 NA NA 1.39
# # … with 5,017 more rows, and 35 more variables: D2.MAN <dbl>, L10D1.MAN <dbl>, L10D2.MAN <dbl>,
# # D1.PU <dbl>, D2.PU <dbl>, L10D1.PU <dbl>, L10D2.PU <dbl>, D1.CON <dbl>, D2.CON <dbl>,
# # L10D1.CON <dbl>, L10D2.CON <dbl>, D1.WRT <dbl>, D2.WRT <dbl>, L10D1.WRT <dbl>, L10D2.WRT <dbl>,
# # D1.TRA <dbl>, D2.TRA <dbl>, L10D1.TRA <dbl>, L10D2.TRA <dbl>, D1.FIRE <dbl>, D2.FIRE <dbl>,
# # L10D1.FIRE <dbl>, L10D2.FIRE <dbl>, D1.GOV <dbl>, D2.GOV <dbl>, L10D1.GOV <dbl>,
# # L10D2.GOV <dbl>, D1.OTH <dbl>, D2.OTH <dbl>, L10D1.OTH <dbl>, L10D2.OTH <dbl>, D1.SUM <dbl>,
# # D2.SUM <dbl>, L10D1.SUM <dbl>, L10D2.SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
Log-differences of the form \(log(x_t) - log(x_{t-s})\) are also easily computed.
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fdiff(c(1, 10), 1, Year, log = TRUE)
# # A tibble: 5,027 × 25
# Country Variable Year Dlog1.AGR L10Dlog1.AGR Dlog1.MIN L10Dlog1.MIN Dlog1.MAN L10Dlog1.MAN
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA
# 6 BWA VA 1965 -0.0359 NA -0.336 NA 0.324 NA
# 7 BWA VA 1966 0.117 NA -0.236 NA -0.236 NA
# 8 BWA VA 1967 0.0796 NA 0.154 NA 0.154 NA
# 9 BWA VA 1968 0.0972 NA -0.223 NA -0.223 NA
# 10 BWA VA 1969 0.0355 NA 1.05 NA 1.05 NA
# # … with 5,017 more rows, and 16 more variables: Dlog1.PU <dbl>, L10Dlog1.PU <dbl>,
# # Dlog1.CON <dbl>, L10Dlog1.CON <dbl>, Dlog1.WRT <dbl>, L10Dlog1.WRT <dbl>, Dlog1.TRA <dbl>,
# # L10Dlog1.TRA <dbl>, Dlog1.FIRE <dbl>, L10Dlog1.FIRE <dbl>, Dlog1.GOV <dbl>, L10Dlog1.GOV <dbl>,
# # Dlog1.OTH <dbl>, L10Dlog1.OTH <dbl>, Dlog1.SUM <dbl>, L10Dlog1.SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
Finally, it is also possible to compute quasi-differences and quasi-log-differences of the form \(x_t - \rho x_{t-s}\) or \(log(x_t) - \rho log(x_{t-s})\):
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fdiff(t = Year, rho = 0.95)
# # A tibble: 5,027 × 14
# Country Variable Year AGR MIN MAN PU CON WRT TRA FIRE GOV OTH
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA NA NA NA NA
# 6 BWA VA 1965 0.241 -0.824 0.318 0.0359 0.719 1.13 0.363 0.184 1.11 0.454
# 7 BWA VA 1966 2.74 -0.401 -0.163 0.0743 0.0673 1.56 0.312 0.174 0.955 0.449
# 8 BWA VA 1967 2.35 0.427 0.174 0.0101 -0.381 -3.55 -0.323 0.246 0.988 0.465
# 9 BWA VA 1968 2.91 -0.345 -0.141 0.0101 0.365 1.08 0.804 -0.427 -1.66 -0.780
# 10 BWA VA 1969 1.82 3.50 1.43 0.385 2.32 0.841 0.397 0.252 0.818 0.385
# # … with 5,017 more rows, and 1 more variable: SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
The quasi-differencing feature was added to fdiff
to
facilitate the preparation of time series and panel data for
least-squares estimations suffering from serial correlation following
Cochrane & Orcutt (1949).
Finally, fgrowth
computes growth rates in the same way.
By default exact growth rates are computed in percentage terms using
\((x_t-x_{t-s}) / x_{t-s} \times 100\)
(the default argument is scale = 100
). The user can also
request growth rates obtained by log-differencing using \(log(x_t/ x_{t-s}) \times 100\).
# Exact growth rates, computed as: (x/lag(x) - 1) * 100
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year)
# # A tibble: 5,027 × 25
# Country Variable Year G1.AGR L10G1.AGR G1.MIN L10G1.MIN G1.MAN L10G1.MAN G1.PU L10G1.PU G1.CON
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA NA NA NA
# 6 BWA VA 1965 -3.52 NA -28.6 NA 38.2 NA 29.4 NA 104.
# 7 BWA VA 1966 12.4 NA -21.1 NA -21.1 NA 50 NA 0
# 8 BWA VA 1967 8.29 NA 16.7 NA 16.7 NA 0 NA -33.3
# 9 BWA VA 1968 10.2 NA -20 NA -20 NA 0 NA 35.7
# 10 BWA VA 1969 3.61 NA 185. NA 185. NA 185. NA 185.
# # … with 5,017 more rows, and 13 more variables: L10G1.CON <dbl>, G1.WRT <dbl>, L10G1.WRT <dbl>,
# # G1.TRA <dbl>, L10G1.TRA <dbl>, G1.FIRE <dbl>, L10G1.FIRE <dbl>, G1.GOV <dbl>, L10G1.GOV <dbl>,
# # G1.OTH <dbl>, L10G1.OTH <dbl>, G1.SUM <dbl>, L10G1.SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
# Log-difference growth rates, computed as: log(x / lag(x)) * 100
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year, logdiff = TRUE)
# # A tibble: 5,027 × 25
# Country Variable Year Dlog1.AGR L10Dlog1.AGR Dlog1.MIN L10Dlog1.MIN Dlog1.MAN L10Dlog1.MAN
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA
# 6 BWA VA 1965 -3.59 NA -33.6 NA 32.4 NA
# 7 BWA VA 1966 11.7 NA -23.6 NA -23.6 NA
# 8 BWA VA 1967 7.96 NA 15.4 NA 15.4 NA
# 9 BWA VA 1968 9.72 NA -22.3 NA -22.3 NA
# 10 BWA VA 1969 3.55 NA 105. NA 105. NA
# # … with 5,017 more rows, and 16 more variables: Dlog1.PU <dbl>, L10Dlog1.PU <dbl>,
# # Dlog1.CON <dbl>, L10Dlog1.CON <dbl>, Dlog1.WRT <dbl>, L10Dlog1.WRT <dbl>, Dlog1.TRA <dbl>,
# # L10Dlog1.TRA <dbl>, Dlog1.FIRE <dbl>, L10Dlog1.FIRE <dbl>, Dlog1.GOV <dbl>, L10Dlog1.GOV <dbl>,
# # Dlog1.OTH <dbl>, L10Dlog1.OTH <dbl>, Dlog1.SUM <dbl>, L10Dlog1.SUM <dbl>
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
fdiff
and fgrowth
can also perform leaded
(forward) differences and growth rates
(i.e. ... %>% fgrowth(-c(1, 10), 1:2, Year)
would
compute one and 10-year leaded first and second differences). Again it
is possible to perform sequential operations:
# This computes the 1 and 10-year growth rates, for the current period and lagged by one period
GGDC10S %>%
fselect(-Region, -Regioncode) %>%
fgroup_by(Variable, Country) %>% fgrowth(c(1, 10), 1, Year) %>% flag(0:1, Year)
# # A tibble: 5,027 × 47
# Country Variable Year G1.AGR L1.G1.AGR L10G1.AGR L1.L10G1.AGR G1.MIN L1.G1.MIN L10G1.MIN
# * <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 BWA VA 1960 NA NA NA NA NA NA NA
# 2 BWA VA 1961 NA NA NA NA NA NA NA
# 3 BWA VA 1962 NA NA NA NA NA NA NA
# 4 BWA VA 1963 NA NA NA NA NA NA NA
# 5 BWA VA 1964 NA NA NA NA NA NA NA
# 6 BWA VA 1965 -3.52 NA NA NA -28.6 NA NA
# 7 BWA VA 1966 12.4 -3.52 NA NA -21.1 -28.6 NA
# 8 BWA VA 1967 8.29 12.4 NA NA 16.7 -21.1 NA
# 9 BWA VA 1968 10.2 8.29 NA NA -20 16.7 NA
# 10 BWA VA 1969 3.61 10.2 NA NA 185. -20 NA
# # … with 5,017 more rows, and 37 more variables: L1.L10G1.MIN <dbl>, G1.MAN <dbl>, L1.G1.MAN <dbl>,
# # L10G1.MAN <dbl>, L1.L10G1.MAN <dbl>, G1.PU <dbl>, L1.G1.PU <dbl>, L10G1.PU <dbl>,
# # L1.L10G1.PU <dbl>, G1.CON <dbl>, L1.G1.CON <dbl>, L10G1.CON <dbl>, L1.L10G1.CON <dbl>,
# # G1.WRT <dbl>, L1.G1.WRT <dbl>, L10G1.WRT <dbl>, L1.L10G1.WRT <dbl>, G1.TRA <dbl>,
# # L1.G1.TRA <dbl>, L10G1.TRA <dbl>, L1.L10G1.TRA <dbl>, G1.FIRE <dbl>, L1.G1.FIRE <dbl>,
# # L10G1.FIRE <dbl>, L1.L10G1.FIRE <dbl>, G1.GOV <dbl>, L1.G1.GOV <dbl>, L10G1.GOV <dbl>,
# # L1.L10G1.GOV <dbl>, G1.OTH <dbl>, L1.G1.OTH <dbl>, L10G1.OTH <dbl>, L1.L10G1.OTH <dbl>, …
#
# Grouped by: Variable, Country [85 | 59 (7.7) 4-65]
This section seeks to demonstrate that the functionality introduced in the preceding 2 sections indeed produces code that evaluates substantially faster than native dplyr.
To do this properly, the different components of a typical piped call (selecting / subsetting, ordering, grouping, and performing some computation) are bechmarked separately on 2 different data sizes.
All benchmarks are run on a Windows 8.1 laptop with a 2x 2.2 GHZ Intel i5 processor, 8GB DDR3 RAM and a Samsung 850 EVO SSD hard drive.
Bechmarks are run on the original GGDC10S
data used
throughout this vignette and a larger dataset with approx. 1 million
observations, obtained by replicating and row-binding
GGDC10S
200 times while maintaining unique groups.
# This shows the groups in GGDC10S
GRP(GGDC10S, ~ Variable + Country)
# collapse grouping object of length 5027 with 85 ordered groups
#
# Call: GRP.default(X = GGDC10S, by = ~Variable + Country), X is unsorted
#
# Distribution of group sizes:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 4.00 53.00 62.00 59.14 63.00 65.00
#
# Groups with sizes:
# EMP.ARG EMP.BOL EMP.BRA EMP.BWA EMP.CHL EMP.CHN
# 62 61 62 52 63 62
# ---
# VA.TWN VA.TZA VA.USA VA.VEN VA.ZAF VA.ZMB
# 63 52 65 63 52 52
# This replicates the data 200 times
data <- replicate(200, GGDC10S, simplify = FALSE)
# This function adds a number i to the country and variable columns of each dataset
uniquify <- function(x, i) ftransform(x, lapply(unclass(x)[c(1,4)], paste0, i))
# Making datasets unique and row-binding them
data <- unlist2d(Map(uniquify, data, as.list(1:200)), idcols = FALSE)
fdim(data)
# [1] 1005400 16
# This shows the groups in the replicated data
GRP(data, ~ Variable + Country)
# collapse grouping object of length 1005400 with 17000 ordered groups
#
# Call: GRP.default(X = data, by = ~Variable + Country), X is unsorted
#
# Distribution of group sizes:
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 4.00 53.00 62.00 59.14 63.00 65.00
#
# Groups with sizes:
# EMP1.ARG1 EMP1.BOL1 EMP1.BRA1 EMP1.BWA1 EMP1.CHL1 EMP1.CHN1
# 62 61 62 52 63 62
# ---
# VA99.TWN99 VA99.TZA99 VA99.USA99 VA99.VEN99 VA99.ZAF99 VA99.ZMB99
# 63 52 65 63 52 52
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1240596 66.3 2354444 125.8 NA 2354444 125.8
# Vcells 18426179 140.6 27686088 211.3 16384 21600141 164.8
## Selecting columns
# Small
microbenchmark(dplyr = select(GGDC10S, Country, Variable, AGR:SUM),
collapse = fselect(GGDC10S, Country, Variable, AGR:SUM))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 840.295 860.4875 924.43069 881.090 951.528 2783.572 100
# collapse 2.911 3.5055 4.97166 5.084 6.109 11.316 100
# Large
microbenchmark(dplyr = select(data, Country, Variable, AGR:SUM),
collapse = fselect(data, Country, Variable, AGR:SUM))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 783.838 794.8875 866.54648 819.795 889.9665 2701.490 100
# collapse 2.788 3.2800 4.77199 4.346 5.7195 17.917 100
## Subsetting columns
# Small
microbenchmark(dplyr = filter(GGDC10S, Variable == "VA"),
collapse = fsubset(GGDC10S, Variable == "VA"))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 1585.675 1606.2980 1714.50520 1634.096 1669.213 4187.986 100
# collapse 42.435 47.1295 60.84031 60.475 69.331 143.828 100
# Large
microbenchmark(dplyr = filter(data, Variable == "VA"),
collapse = fsubset(data, Variable == "VA"))
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 6.073002 6.581771 7.727104 6.769531 7.094271 60.28767 100
# collapse 2.652126 2.803313 3.008612 2.846773 2.958273 10.19727 100
## Ordering rows
# Small
microbenchmark(dplyr = arrange(GGDC10S, desc(Country), Variable, Year),
collapse = roworder(GGDC10S, -Country, Variable, Year))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 4324.27 4363.4660 4478.7641 4394.8310 4441.735 10734.374 100
# collapse 213.61 250.5305 271.8821 256.5575 265.475 1447.997 100
# Large
microbenchmark(dplyr = arrange(data, desc(Country), Variable, Year),
collapse = roworder(data, -Country, Variable, Year), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 2942.74077 2942.74077 2951.04640 2951.04640 2959.35204 2959.35204 2
# collapse 70.73964 70.73964 70.96608 70.96608 71.19252 71.19252 2
## Grouping
# Small
microbenchmark(dplyr = group_by(GGDC10S, Country, Variable),
collapse = fgroup_by(GGDC10S, Country, Variable))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 1049.887 1080.8830 1168.0744 1114.4005 1161.3250 4120.582 100
# collapse 158.875 165.1275 186.9252 173.5325 177.7555 1625.691 100
# Large
microbenchmark(dplyr = group_by(data, Country, Variable),
collapse = fgroup_by(data, Country, Variable), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 52.01932 52.58586 55.71274 53.31037 54.33906 69.98704 10
# collapse 30.77439 31.09149 31.82901 31.60659 32.03810 33.99134 10
## Computing a new column
# Small
microbenchmark(dplyr = mutate(GGDC10S, NEW = AGR+1),
collapse = ftransform(GGDC10S, NEW = AGR+1))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 622.954 642.6135 737.58180 673.3840 714.8350 5011.266 100
# collapse 7.954 10.4960 13.25489 13.0175 15.3135 26.445 100
# Large
microbenchmark(dplyr = mutate(data, NEW = AGR+1),
collapse = ftransform(data, NEW = AGR+1))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 883.304 1170.037 1550.3043 1228.688 1330.532 12047.40 100
# collapse 466.949 609.547 756.6935 635.623 679.206 10215.85 100
## All combined with pipes
# Small
microbenchmark(dplyr = filter(GGDC10S, Variable == "VA") %>%
select(Country, Year, AGR:SUM) %>%
arrange(desc(Country), Year) %>%
mutate(NEW = AGR+1) %>%
group_by(Country),
collapse = fsubset(GGDC10S, Variable == "VA", Country, Year, AGR:SUM) %>%
roworder(-Country, Year) %>%
ftransform(NEW = AGR+1) %>%
fgroup_by(Country))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 6380.994 6528.307 6869.1088 6609.7330 6736.218 11789.591 100
# collapse 144.812 166.255 192.5643 192.8845 213.774 269.124 100
# Large
microbenchmark(dplyr = filter(data, Variable == "VA") %>%
select(Country, Year, AGR:SUM) %>%
arrange(desc(Country), Year) %>%
mutate(NEW = AGR+1) %>%
group_by(Country),
collapse = fsubset(data, Variable == "VA", Country, Year, AGR:SUM) %>%
roworder(-Country, Year) %>%
ftransform(NEW = AGR+1) %>%
fgroup_by(Country), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 9.878581 10.040531 10.146889 10.129891 10.299774 10.424168 10
# collapse 2.839332 2.847573 2.897987 2.895523 2.911246 3.001323 10
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1245282 66.6 2354444 125.8 NA 2354444 125.8
# Vcells 18440710 140.7 56196908 428.8 16384 65366998 498.8
## Grouping the data
cgGGDC10S <- fgroup_by(GGDC10S, Variable, Country) %>% fselect(-Region, -Regioncode)
gGGDC10S <- group_by(GGDC10S, Variable, Country) %>% fselect(-Region, -Regioncode)
cgdata <- fgroup_by(data, Variable, Country) %>% fselect(-Region, -Regioncode)
gdata <- group_by(data, Variable, Country) %>% fselect(-Region, -Regioncode)
rm(data, GGDC10S)
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1262260 67.5 2354444 125.8 NA 2354444 125.8
# Vcells 18059478 137.8 56196908 428.8 16384 65366998 498.8
## Conversion of Grouping object: This time would be required extra in all hybrid calls
## i.e. when calling collapse functions on data grouped with dplyr::group_by
# Small
microbenchmark(GRP(gGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# GRP(gGGDC10S) 8.405 9.0815 9.717 9.389 9.6555 37.638 100
# Large
microbenchmark(GRP(gdata))
# Unit: microseconds
# expr min lq mean median uq max neval
# GRP(gdata) 734.187 812.8865 911.7277 830.701 850.996 8850.957 100
## Sum
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, sum, na.rm = TRUE),
collapse = fsum(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 3638.668 3729.8725 4114.4714 3788.7075 3950.2065 10985.499 100
# collapse 205.041 209.7355 217.4181 216.2135 224.2085 253.093 100
# Large
microbenchmark(dplyr = summarise_all(gdata, sum, na.rm = TRUE),
collapse = fsum(cgdata), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 260.38432 359.98549 366.40696 373.66699 376.93514 428.37583 10
# collapse 38.81126 38.98743 39.47207 39.36951 39.85876 40.41997 10
## Mean
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, mean.default, na.rm = TRUE),
collapse = fmean(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 4742.962 4855.938 5644.8677 4926.293 5142.076 14394.403 100
# collapse 171.954 174.988 185.4869 184.418 192.987 229.272 100
# Large
microbenchmark(dplyr = summarise_all(gdata, mean.default, na.rm = TRUE),
collapse = fmean(cgdata), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 691.95663 694.15644 717.16039 708.50103 729.18324 783.06158 10
# collapse 32.11104 32.19029 32.48828 32.32491 32.79213 33.33968 10
## Median
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, median, na.rm = TRUE),
collapse = fmedian(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 14881.934 15240.090 17010.3006 15443.286 18811.5585 68472.419 100
# collapse 243.663 270.764 291.2714 292.945 311.6615 337.348 100
# Large
microbenchmark(dplyr = summarise_all(gdata, median, na.rm = TRUE),
collapse = fmedian(cgdata), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 2786.15270 2786.15270 2841.36788 2841.36788 2896.58305 2896.58305 2
# collapse 51.48329 51.48329 52.84383 52.84383 54.20438 54.20438 2
## Standard Deviation
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, sd, na.rm = TRUE),
collapse = fsd(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 8269.208 8688.658 9529.441 8753.397 9280.371 17814.336 100
# collapse 299.177 312.010 323.948 324.146 335.462 369.082 100
# Large
microbenchmark(dplyr = summarise_all(gdata, sd, na.rm = TRUE),
collapse = fsd(cgdata), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 1368.18697 1368.18697 1449.01972 1449.01972 1529.8525 1529.8525 2
# collapse 57.45994 57.45994 57.48087 57.48087 57.5018 57.5018 2
## Maximum
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, max, na.rm = TRUE),
collapse = fmax(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 4022.920 4086.552 4421.13291 4134.994 4287.5750 8290.036 100
# collapse 66.092 71.709 81.73145 77.859 88.5395 281.711 100
# Large
microbenchmark(dplyr = summarise_all(gdata, max, na.rm = TRUE),
collapse = fmax(cgdata), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 322.57795 411.38678 434.99908 427.23246 511.42646 520.80947 10
# collapse 10.98857 11.03367 11.14168 11.13117 11.24347 11.32855 10
## First Value
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, first),
collapse = ffirst(cgGGDC10S, na.rm = FALSE))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 4385.237 4451.5135 4798.46329 4491.9395 4579.0645 8089.587 100
# collapse 11.234 13.4275 22.07194 22.4885 30.6475 50.881 100
# Large
microbenchmark(dplyr = summarise_all(gdata, first),
collapse = ffirst(cgdata, na.rm = FALSE), times = 10)
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 458756.134 558528.568 586186.992 569803.261 667683.278 679823.870 10
# collapse 881.254 966.247 1021.499 1013.377 1073.708 1160.792 10
## Number of Distinct Values
# Small
microbenchmark(dplyr = summarise_all(gGGDC10S, n_distinct, na.rm = TRUE),
collapse = fndistinct(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 21780.676 22361.749 24245.5181 24452.338 25546.1160 36710.375 100
# collapse 200.449 213.364 233.5405 242.761 247.4145 413.444 100
# Large
microbenchmark(dplyr = summarise_all(gdata, n_distinct, na.rm = TRUE),
collapse = fndistinct(cgdata), times = 5)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 4325.96330 4360.09453 4393.06125 4401.30367 4431.85872 4446.08604 5
# collapse 30.16575 30.32852 30.59962 30.54275 30.67083 31.29026 5
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1264713 67.6 2354444 125.8 NA 2354444 125.8
# Vcells 18065149 137.9 56196908 428.8 16384 65366998 498.8
Below are some additional benchmarks for weighted aggregations and aggregations using the statistical mode, which cannot easily or efficiently be performed with dplyr.
## Weighted Mean
# Small
microbenchmark(fmean(cgGGDC10S, SUM))
# Unit: microseconds
# expr min lq mean median uq max neval
# fmean(cgGGDC10S, SUM) 187.657 190.7115 192.1305 191.88 192.618 238.374 100
# Large
microbenchmark(fmean(cgdata, SUM), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fmean(cgdata, SUM) 34.23639 34.40294 34.81225 34.94092 35.17046 35.33507 10
## Weighted Standard-Deviation
# Small
microbenchmark(fsd(cgGGDC10S, SUM))
# Unit: microseconds
# expr min lq mean median uq max neval
# fsd(cgGGDC10S, SUM) 290.936 295.7535 300.7043 300.735 303.2155 353.748 100
# Large
microbenchmark(fsd(cgdata, SUM), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fsd(cgdata, SUM) 55.65324 55.83614 57.10537 56.87768 57.26942 61.34584 10
## Statistical Mode
# Small
microbenchmark(fmode(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# fmode(cgGGDC10S) 256.455 257.111 264.0019 262.687 265.3725 335.954 100
# Large
microbenchmark(fmode(cgdata), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fmode(cgdata) 42.65283 42.82495 43.03128 43.09051 43.15217 43.53196 10
## Weighted Statistical Mode
# Small
microbenchmark(fmode(cgGGDC10S, SUM))
# Unit: microseconds
# expr min lq mean median uq max neval
# fmode(cgGGDC10S, SUM) 398.069 398.848 401.3769 399.6065 401.595 466.252 100
# Large
microbenchmark(fmode(cgdata, SUM), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fmode(cgdata, SUM) 66.25042 66.35788 66.81522 66.76358 67.27858 67.7108 10
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1264164 67.6 2354444 125.8 NA 2354444 125.8
# Vcells 18061767 137.9 59130945 451.2 16384 66986037 511.1
## Replacing with group sum
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, sum, na.rm = TRUE),
collapse = fsum(cgGGDC10S, TRA = "replace_fill"))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 11236.009 11360.6285 12714.1049 11432.461 12105.8240 62627.869 100
# collapse 229.354 235.7295 249.8843 251.002 256.3115 290.034 100
# Large
microbenchmark(dplyr = mutate_all(gdata, sum, na.rm = TRUE),
collapse = fsum(cgdata, TRA = "replace_fill"), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 443.04985 490.02155 529.30799 524.25095 556.1335 640.5656 10
# collapse 47.81633 49.83603 90.73421 51.40867 172.7780 194.1665 10
## Dividing by group sum
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) x/sum(x, na.rm = TRUE)),
collapse = fsum(cgGGDC10S, TRA = "/"))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 11653.758 11996.559 13185.7697 12317.323 13118.811 19010.265 100
# collapse 234.069 262.031 273.7795 266.582 282.408 397.741 100
# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) x/sum(x, na.rm = TRUE)),
collapse = fsum(cgdata, TRA = "/"), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 444.27075 678.69448 696.19303 733.69137 755.1910 781.6686 10
# collapse 48.63732 49.38302 93.75898 50.36702 110.3876 287.4560 10
## Centering
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) x-mean.default(x, na.rm = TRUE)),
collapse = fwithin(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 12427.920 12636.856 13940.1222 12797.2480 13225.7595 33148.377 100
# collapse 215.373 240.752 253.7297 251.8425 263.4455 351.493 100
# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) x-mean.default(x, na.rm = TRUE)),
collapse = fwithin(cgdata), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 924.56591 948.67358 1058.7679 1056.2834 1132.6680 1274.0117 10
# collapse 44.14962 45.06978 135.4698 52.2871 217.7738 391.6899 10
## Centering and Scaling (Standardizing)
# Small
microbenchmark(dplyr = mutate_all(gGGDC10S, function(x) (x-mean.default(x, na.rm = TRUE))/sd(x, na.rm = TRUE)),
collapse = fscale(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr 17531.846 18167.49 22306.5920 19551.526 24218.72 114215.955 100
# collapse 342.022 368.18 391.2892 386.425 403.44 509.179 100
# Large
microbenchmark(dplyr = mutate_all(gdata, function(x) (x-mean.default(x, na.rm = TRUE))/sd(x, na.rm = TRUE)),
collapse = fscale(cgdata), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr 2242.73034 2242.73034 2246.27772 2246.27772 2249.82510 2249.82510 2
# collapse 71.01844 71.01844 72.77506 72.77506 74.53169 74.53169 2
## Lag
# Small
microbenchmark(dplyr_unordered = mutate_all(gGGDC10S, dplyr::lag),
collapse_unordered = flag(cgGGDC10S),
dplyr_ordered = mutate_all(gGGDC10S, dplyr::lag, order_by = "Year"),
collapse_ordered = flag(cgGGDC10S, t = Year))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr_unordered 23909.355 24590.508 26401.30384 25137.3255 27604.8285 46615.524 100
# collapse_unordered 48.011 74.251 83.97046 81.8975 94.2795 149.281 100
# dplyr_ordered 55510.146 58357.329 61153.07481 60315.6945 61255.5375 120527.085 100
# collapse_ordered 81.467 109.593 119.22595 116.0300 128.1865 157.030 100
# Large
microbenchmark(dplyr_unordered = mutate_all(gdata, dplyr::lag),
collapse_unordered = flag(cgdata),
dplyr_ordered = mutate_all(gdata, dplyr::lag, order_by = "Year"),
collapse_ordered = flag(cgdata, t = Year), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr_unordered 3346.89503 3346.89503 3393.11084 3393.11084 3439.32666 3439.32666 2
# collapse_unordered 13.34124 13.34124 17.64708 17.64708 21.95292 21.95292 2
# dplyr_ordered 10032.34318 10032.34318 10052.54853 10052.54853 10072.75388 10072.75388 2
# collapse_ordered 29.48708 29.48708 98.31562 98.31562 167.14417 167.14417 2
## First-Difference (unordered)
# Small
microbenchmark(dplyr_unordered = mutate_all(gGGDC10S, function(x) x - dplyr::lag(x)),
collapse_unordered = fdiff(cgGGDC10S))
# Unit: microseconds
# expr min lq mean median uq max neval
# dplyr_unordered 24717.834 25359.2175 26912.1569 25487.3835 29171.6025 38939.504 100
# collapse_unordered 63.345 88.0885 106.0978 96.6575 124.7425 201.556 100
# Large
microbenchmark(dplyr_unordered = mutate_all(gdata, function(x) x - dplyr::lag(x)),
collapse_unordered = fdiff(cgdata), times = 2)
# Unit: milliseconds
# expr min lq mean median uq max neval
# dplyr_unordered 3515.82462 3515.82462 3673.12733 3673.12733 3830.43004 3830.43004 2
# collapse_unordered 16.83087 16.83087 17.20553 17.20553 17.58019 17.58019 2
gc()
# used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
# Ncells 1294753 69.2 3336430 178.2 NA 3336430 178.2
# Vcells 18118377 138.3 65624624 500.7 16384 68179767 520.2
Below again some benchmarks for transformations not easily of efficiently performed with dplyr, such as centering on the overall mean, mean-preserving scaling, weighted scaling and centering, sequences of lags / leads, (iterated) panel-differences and growth rates.
# Centering on overall mean
microbenchmark(fwithin(cgdata, mean = "overall.mean"), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fwithin(cgdata, mean = "overall.mean") 44.64793 45.33989 48.4299 48.04413 51.27501 53.84571 10
# Weighted Centering
microbenchmark(fwithin(cgdata, SUM), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fwithin(cgdata, SUM) 40.84953 41.31439 42.89083 41.5805 42.3562 50.26112 10
microbenchmark(fwithin(cgdata, SUM, mean = "overall.mean"), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max
# fwithin(cgdata, SUM, mean = "overall.mean") 41.35231 41.65912 43.58867 42.2053 44.00198 51.05164
# neval
# 10
# Weighted Scaling and Standardizing
microbenchmark(fsd(cgdata, SUM, TRA = "/"), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fsd(cgdata, SUM, TRA = "/") 61.62743 62.225 64.24302 62.8743 63.64418 71.65894 10
microbenchmark(fscale(cgdata, SUM), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fscale(cgdata, SUM) 63.84479 64.38103 65.65799 64.67156 64.94355 71.4104 10
# Sequence of lags and leads
microbenchmark(flag(cgdata, -1:1), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# flag(cgdata, -1:1) 25.62102 31.47468 62.39627 76.55618 76.66315 76.89357 10
# Iterated difference
microbenchmark(fdiff(cgdata, 1, 2), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fdiff(cgdata, 1, 2) 40.78979 41.6856 43.73783 42.89803 47.23688 47.57595 10
# Growth Rate
microbenchmark(fgrowth(cgdata,1), times = 10)
# Unit: milliseconds
# expr min lq mean median uq max neval
# fgrowth(cgdata, 1) 13.55292 14.28899 16.07178 15.3011 18.02856 19.73039 10
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). “Patterns of Structural Change in Developing Countries.” . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
Cochrane, D. & Orcutt, G. H. (1949). “Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms”. Journal of the American Statistical Association. 44 (245): 32–61.
Prais, S. J. & Winsten, C. B. (1954). “Trend Estimators and Serial Correlation”. Cowles Commission Discussion Paper No. 383. Chicago.
Row-wise operations are not supported by TRA.↩︎